Modern technologies are the most important component for any state. Today, advanced technologies allow to create any mechanisms at the level of atoms and molecules. For the production of machines, aggregates and their individual components, new nanomaterials and nanotechnologies are used, which reduce friction repeatedly and with high efficiency, protect parts from damage, save energy and increase the reliability of machine parts as a whole. Virtually in any mechanism, some parts focus on the main load. In this study, such a detail is the steel clamping collet 65G. A method of plasma siliconizing is proposed for hardening its inner surface. The raise of this characteristics will allow to increase its service life, and therefore will ensure more reliable operation of both a separate mechanism and production as a whole. This allows the enterprise to become cost-effective and competitive. In this paper, the magnitude of the effect of the silicon atoms introduction into the surface layer of a part on wear resistance and durability is investigated. Research and subsequent processing of the results using Statistica software for statistical analysis shows an increase in the strength characteristics by 2.6 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.