In this paper, the modification of PVC/Corn cob blends was investigated. Rheological and diffusion properties of blends are important to learn the behavior of blend’s in molten state, because it will provide information necessary for the processing. Nowadays, the development of biomaterials has become a primary goal for material engineers. Using materials from natural sources gives an option to modify PVC structures and properties. The following mechanical properties of the prepared composite were determined; tensile-, bending strength and hardness. The PVC/Corn cob blends have increased impact strength and the other mechanical properties can be improved as well. The relationship between the morphology and properties of the foam were also investigated. The result of DSC and dynamic mechanical analysis showed that the blends form a partially compatible system. The rheological analysis showed that the PVC composite with corn cob could be processed and recycled using regular thermoplastic processing systems.
This paper presents an experimental investigation of two types of aliphatic hydrocarbons resistant soft PVC hoses. A number of tests were performed to determine the internal structures and the difference between the hoses. First tests concerned with pentane resistance, the plasticizer and extender's effects on variations in the structure. The solubility of gas in plasticizer and the changing of morphology determined the applicability. The second analysis of FTIR results can show the internal structure's composition, what the difference is between the two formulations. The weight changes of the hoses can shows the material's gas resistance. The gas diffusion's driving force was the gas evaporation. The gas diffusion can be determined from the decrease of the quantity of the hydrocarbons. The internal structure was also observed by DMA. The measurement was made after a pentane soak of simple samples. The morphology, the material's density, mechanical properties and aliphatic hydrocarbon resistance of samples were determined. After all the measurements, the difference between the products was noticeable during even visual inspection of the samples as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.