In this work, we study the effect of high-temperature thermomechanical treatment (HTMT) with deformation in the austenite region on the microstructure, tensile properties, impact toughness, and fracture features of advanced low-activation 12% chromium ferritic-martensitic reactor steel EK-181. HTMT more significantly modifies the steel structural-phase state than the traditional heat treatment (THT). As a result of HTMT, the hierarchically organized structure of steel is refined. The forming grains and subgrains are elongated in the rolling direction and flattened in the rolling plane (so-called pancake structure) and have a high density of dislocations pinned by stable nanosized particles of the MX type. This microstructure provides a simultaneous increase, relative to THT, in the yield strength and impact toughness of steel EK-181 and does not practically change its ductile-brittle transition temperature. The most important reasons for the increase in impact toughness are a decrease in the effective grain size of steel (martensite blocks and ferrite grains) and the appearance of a crack-arrester type delamination perpendicular to the main crack propagation direction. This causes branching of the main crack and an increase in the absorbed impact energy.
Using X-ray diffraction, scanning and transmission electron microscopy, the microstructure of a new low-activation chromium-manganese austenitic steel with a high content of manganese and strong carbide-forming elements is studied. Its structure, dislocation character and particle composition are detailed. The processes taking place in the steel under cold-rolling deformation are described. It is shown that the mechanical properties of the new high-manganese steel revealed by testing at 20 and 650 °C are comparable with those of well-known analogs or exceed them. Relying on the structural studies, this is attributed to the dispersion and substructural strengthening. Better plastic properties of the steel are associated with the twinning-induced plasticity effect. It is shown that the steel fracture after tension at the test temperatures is mainly ductile dimple transcrystalline with the elements of ductile intercrystalline fracture (at 20 °C), while at 650 °C the signs of the latter disappear. The low-activation chromium-manganese austenitic steels characterized by increased austenite stability are thought to be promising structural materials for nuclear power engineering.
The effect of high-temperature thermomechanical treatment on the structural transformations and mechanical properties of metastable austenitic steel of the AISI 321 type is investigated. The features of the grain and defect microstructure of steel were studied by scanning electron microscopy with electron back-scatter diffraction (SEM EBSD) and transmission electron microscopy (TEM). It is shown that in the initial state after solution treatment the average grain size is 18 μm. A high (≈50%) fraction of twin boundaries (annealing twins) was found. In the course of hot (with heating up to 1100 °C) plastic deformation by rolling to moderate strain (e = 1.6, where e is true strain) the grain structure undergoes fragmentation, which gives rise to grain refining (the average grain size is 8 μm). Partial recovery and recrystallization also occur. The fraction of low-angle misorientation boundaries increases up to ≈46%, and that of twin boundaries decreases to ≈25%, compared to the initial state. The yield strength after this treatment reaches up to 477 MPa with elongation-to-failure of 26%. The combination of plastic deformation with heating up to 1100 °C (e = 0.8) and subsequent deformation with heating up to 600 °C (e = 0.7) reduces the average grain size to 1.4 μm and forms submicrocrystalline fragments. The fraction of low-angle misorientation boundaries is ≈60%, and that of twin boundaries is ≈3%. The structural states formed after this treatment provide an increase in the strength properties of steel (yield strength reaches up to 677 MPa) with ductility values of 12%. The mechanisms of plastic deformation and strengthening of metastable austenitic steel under the above high-temperature thermomechanical treatments are discussed.
The deformation microstructures formed by novel multistage high-temperature thermomechanical treatment (HTMT) and their effect on the mechanical properties of austenitic reactor steel are investigated. It is shown that HTMT with plastic deformation at the temperature decreasing in each stage (1100, 900, and 600 °C with a total strain degree of e = 2) is an effective method for refining the grain structure and increasing the strength of the reactor steel. The structural features of grains, grain boundaries and defective substructure of the steel are studied in two sections (in planes perpendicular to the transverse direction and perpendicular to the normal direction) by Scanning Electron Microscopy with Electron Back-Scatter Diffraction (SEM EBSD) and Transmission Electron Microscopy (TEM). After the multistage HTMT, a fragmented structure is formed with grains elongated along the rolling direction and flattened in the rolling plane. The average grain size decreases from 19.3 µm (for the state after solution treatment) to 1.8 µm. A high density of low-angle boundaries (up to ≈ 80%) is found inside deformed grains. An additional cold deformation (e = 0.3) after the multistage HTMT promotes mechanical twinning within fragmented grains and subgrains. The resulting structural states provide high strength properties of steel: the yield strength increases up to 910 MPa (at 20 °C) and up to 580 MPa (at 650 °C), which is 4.6 and 6.1 times higher than that in the state after solution treatment (ST), respectively. The formation of deformed substructure and the influence of dynamic strain aging at an elevated tensile temperature on the mechanical properties of the steel are discussed. Based on the results obtained, the multistage HTMT used in this study can be applied for increasing the strength of austenitic steels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.