Purpose. An algorithm development for calculating the optimum depth for cyclical-and-continuous method schemes introduction when cleaning-up the deep iron ore quarries.Methods. When developing an algorithm for calculating the optimum depth for cyclical-and-continuous method schemes introduction under the conditions of the Kacharsky mine, abstraction and analytical techniques were used to distinguish the parameters that most significantly influence on the depth value of the cyclical-and-continuous method schemes introduction. The developed algorithm has been applied when constructing a mathematical model based on mining-engineering parameters for cleaning-up the Kacharsky Iron Ore Mine.Findings. An algorithm is presented for calculating the optimum depth to put into operation the railway transport and a conveyor hoister in the cyclical-and-continuous method schemes, taking into account the mining-engineering and economic parameters for cleaning-up the deep quarries in surface mining. It has been substantiated that the transition from a combined automobile-railway to a combined automobile-conveyor-railway mode of transport is economically viable and will expand the limits of the effective use of surface mining of iron ore deposits. It is recommended to restrict the depth of commissioning the railway transport to 149 m, and the conveyor hoister -to 344 m into the cyclical-and-continuous method schemes using automobile-conveyor and automobile-railway modes of transport.Originality. Based on the constructed mathematical model, the dependences have been obtained of the prime costs for transporting the total volume of rocks mined on the depth of the cyclical-and-continuous method schemes introduction under the conditions of the Kacharsky Iron Ore Mine. Practical implications.For the conditions of cleaning-up the Kacharsky Iron Ore Mine, the optimum parameters have been set for the mining-transport scheme of the cyclical-and-continuous method, which ensure the minimum prime costs of the rock mass transportation.
The results of long-terrn research on mapping of oil and gas bearing sites on traditional and non-traditional sites (mine fields, shelf zones, astroblems) allowed to create a database of system criteria for the search technology of structural thermo-atmo-hydrological and geochemical research, where for the first time in the search practice hydrogen was used as the main constituent element of hydrocarbons. The analysis of the results of the hydrogen concentration distribution data made it possible to isolate anomalous values both in areas and in productive wells (in the absence of background ones) and to conduct detailed area large-scale studies with the purpose of area mapping for prospecting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.