1 Курский государственный медицинский университет, г. Курск, 305041, Россия В статье отражены актуальность и степень разработанности проблемы прогнозирования инфекционной заболеваемости населения, предложен один из способов прогнозирования заболеваемости населения различными инфекциями на базе классической декомпозиции временного ряда.Обычно в структуре временных рядов инфекционной заболеваемости выделяют тренд и сезонную составляющую с одним или двумя пиками в зависимости от типа инфекции, а также остаточную компоненту, которая должна удовлетворять условиям случайности, независимости и нормального распределения уровней с математическим ожиданием, равным нулю. При выполнении этих условий методы классической декомпозиции достаточно хорошо позволяют выявить как долгосрочную тенденцию развития процесса, так и сезонные изменения. Методика заключается в последовательной реализации процедур алгоритмического и аналитического выравнивания временного ряда и нахождении сезонной вариации в виде усредненных нормированных отклонений фактических уровней ряда от линии тренда, а также не предполагает в формировании индексов сезонности остаточной компоненты, что способствует более точным прогнозам детерминированных составляющих временного ряда.На первом этапе алгоритма ряд выравнивается с помощью скользящих средних, что позволяет уменьшить остаточную компоненту и получить комбинацию трендовой и сезонной составляющих временного ряда. На втором этапе с помощью метода наименьших квадратов составляется уравнение тренда, отражающего долгосрочную тенденцию динамики. На третьем этапе рассчитываются индексы сезонности, которые показывают степень отклонения сезонного временного ряда от тренда. На четвертом этапе прогнозная модель проверяется на адекватность. На пятом этапе на основе экстраполяции тренда и с учетом индексов сезонности осуществляется прогноз инфекционной заболеваемости на будущие периоды.В результате исследования с помощью описанной процедуры разработана адекватная модель прогнозирования заболеваемости населения России острыми респираторными вирусными инфекциями, верификация которой показала достаточную точность и достоверность выполненных на ее основе прогнозов.Ключевые слова: прогноз, прогнозирование, модель, моделирование, временной ряд, тренд, сезонность, декомпозиция, инфекционная заболеваемость. На сегодняшний день сохраняется весьма неблагоприятная эпидемиологическая обстановка по целому ряду опасных инфекционных заболеваний [1]. Выход из сложившейся ситуации заключается в своевременном и точном прогнозе заболеваемости населения различными инфекциями и принятии наиболее перспективных решений в плане подготовки системы медико-профилактических и терапевтических мероприятий. Таким образом, остается актуальной проблема теоретической разработки и практической реализации методов прогнозирования инфекционной заболеваемости для обеспечения санитарно-эпидемиологического благополучия граждан, сохранения и улучшения их здоровья.В настоящее время математический аппарат прогнозирования инфекционной заболеваемости представле...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.