Microglia contribute to pathophysiology at all stages of multiple sclerosis. Colony-stimulating factor-1 (CSF1) is crucial for microglial proliferation and activation. In this study we measured the CSF1 levels and studied its cellular expression in the mouse spinal cords with experimental autoimmune encephalomyelitis (EAE) to explore the potential contribution of CSF1 in neuronal death. ELISA data showed that CSF1 levels were significantly higher in the spinal cords with acute and chronic EAE than those of normal and adjuvant-injected mice. Immunohistochemical studies demonstrated that CSF1 was expressed in astrocytes and neurons in normal mouse spinal cord. In acute EAE, CSF1 expression was significantly increased, especially in astrocytes in peripheral white matter and large motoneurons. High density of activated microglia was observed in the gray matter where motoneurons expressed high-level CSF1 in acute EAE. Significant large motoneuron loss was seen in chronic EAE and the remaining motoneurons with high-level CSF1 were enwrapped by microglia. Viral vector mediated over-expression of CSF1 in spinal neurons induced profound proliferation and activation of microglia at the injection site and microglia enwrapped CSF1-transduced neurons and their neurites. Significant loss of large CSF1-transduced neurons was seen at 2 and 3 weeks post-viral injection. Demyelination in the CSF1-transduced areas was also significant. These results implicate that CSF1 upregulation in CNS may play an important role in the proliferation and activation of microglia in EAE, contributing to neuroinflammation and neurodegeneration. © 2018 Wiley Periodicals, Inc.
Injury to the peripheral axons of sensory neurons strongly enhances the regeneration of their central axons in the spinal cord. It remains unclear on what molecules that initiate such conditioning effect. Because ATP is released extracellularly by nerve and other tissue injury, we hypothesize that injection of ATP into a peripheral nerve might mimic the stimulatory effect of nerve injury on the regenerative state of the primary sensory neurons. We found that a single injection of 6 μl of 150 μm ATP into female rat sciatic nerve quadrupled the number of axons growing into a lesion epicenter in spinal cord after a concomitant dorsal column transection. A second boost ATP injection 1 week after the first one markedly reinforced the stimulatory effect of a single injection. Single ATP injection increased expression of phospho-STAT3 and GAP43, two markers of regenerative activity, in sensory neurons. Double ATP injections sustained the activation of phospho-STAT3 and GAP43, which may account for the marked axonal growth across the lesion epicenter. Similar studies performed on P2X7 or P2Y2 receptor knock-out mice indicate P2Y2 receptors are involved in the activation of STAT3 after ATP injection or conditioning lesion, whereas P2X7 receptors are not. Injection of ATP at 150 μm caused little Wallerian degeneration and behavioral tests showed no significant long-term adverse effects on sciatic nerve functions. The results in this study reveal possible mechanisms underlying the stimulation of regenerative programs and suggest a practical strategy for stimulating axonal regeneration following spinal cord injury.SIGNIFICANCE STATEMENT Injury of peripheral axons of sensory neurons has been known to strongly enhance the regeneration of their central axons in the spinal cord. In this study, we found that injection of ATP into a peripheral nerve can mimic the effect of peripheral nerve injury and significantly increase the number of sensory axons growing across lesion epicenter in the spinal cord. ATP injection increased expression of several markers for regenerative activity in sensory neurons, including phospho-STAT3 and GAP43. ATP injection did not cause significant long-term adverse effects on the functions of the injected nerve. These results may lead to clinically applicable strategies for enhancing neuronal responses that support regeneration of injured axons.
Microglial proliferation and activation and macrophage accumulation are implicated in neuropathic pain development. In this study, we aim to suppress microgliosis and macrophage accumulation by over-expressing a non-functional soluble colony stimulating factor-1 receptor (sCSF1R) using an adeno-associated virus 9 vector (AAV9). AAV9/sCSF1R and the control vector AAV9/GFP were intrathecally administered into the lumbar spine of adult C57BL/6 mice. Two weeks later, these mice underwent partial sciatic nerve ligation to induce neuropathic pain. GFP and sCSF1R were highly expressed in lumbar dorsal root ganglia (DRG) and spinal cord of AAV9-injected mice. A significant increase in microglia densities in the dorsal and ventral horns of lumbar spinal cords and macrophage densities in DRG and sciatic nerves were observed in the mice with either ligation alone or pre-treated with AAV9/GFP. In nerve-ligated mice pre-treated with AAV9/sCSF1R the microglia densities in the dorsal and ventral horns and macrophage densities in DRG and sciatic nerves were significantly lower compared to nerve-ligated mice pre-treated with AAV9/GFP. Behavioral tests showed that nerve-ligated mice pretreated with AAV9/sCSF1R had a significantly higher paw withdrawal threshold, indicating the alleviation of neuropathic pain. The results implicate that viral vector-mediated expression of sCSF1R may represent a novel strategy in the alleviation of neuropathic pain. K E Y W O R D Sadeno-associated viral vector, colony stimulating factor-1 receptor, dorsal root ganglia, macrophage, microglia, neuropathic pain, spinal cord | INTRODUCTIONMillions of people worldwide suffer from debilitating chronic neuropathic pain, which significantly affects the quality of life of the patients. Neuropathic pain is caused by a lesion or a disease of the somatosensory nervous system such as peripheral nerve injury, diabetic neuropathy, spinal cord injury, multiple sclerosis, or herpes zoster virus infection (Bouhassira & Attal, 2019). The underlying mechanisms for neuropathic pain have been studied extensively for many years -however, many patients do not respond effectively to the current treatments (Cohen & Mao, 2014). It was observed many years ago that peripheral nerve injury can produce rapid and profound mechanical allodynia, and proliferation and activation of microglia and astrocytes in the corresponding segments of the spinal cord (Colburn,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.