Senescence-accelerated OXYS rats are an experimental model of accelerated aging that was established from wistar stock via selection for susceptibility to cataractogenic effects of a galactose-rich diet and via subsequent inbreeding of highly susceptible rats. Currently, we have the 102nd generation of OXYS rats with spontaneously developing cataract and accelerated senescence syndrome, which means early development of a phenotype similar to human geriatric disorders, including accelerated brain aging. in recent years, our group found strong evidence that OXYS rats are a promising model for studies of the mechanisms of brain aging and neurodegenerative processes similar to those seen in Alzheimer disease (AD). The manifestation of behavioral alterations and learning and memory deficits develop since the fourth week of age, i.e., simultaneously with first signs of neurodegeneration detectable on magnetic resonance imaging and under a light microscope. in addition, impaired long-term potentiation has been demonstrated in OXYS rats by the age of 3 months. with age, neurodegenerative changes in the brain of OXYS rats become amplified. we have shown that this deterioration happens against the background of overproduction of amyloid precursor protein (AβPP), accumulation of β-amyloid (Aβ), and hyperphosphorylation of the tau protein in the hippocampus and cortex. The development of AMDlike retinopathy in OXYS rats is also accompanied by increased accumulation of Aβ in the retina. These published data suggest that the OXYS strain may serve as a spontaneous rat model of AD-like pathology and could help to decipher the pathogenesis of AD.
Melatonin synthesis is disordered in patients with Alzheimer's disease (AD). To determine the role of melatonin in the pathogenesis of AD, suitable animal models are needed. The OXYS rats are an experimental model of accelerated senescence that has also been proposed as a spontaneous rat model of AD-like pathology. In the present study, we demonstrate that disturbances in melatonin secretion occur in OXYS rats at 4 months of age. These disturbances occur simultaneously with manifestation of behavioral abnormalities against the background of neurodegeneration and alterations in hormonal status but before the signs of amyloid-β accumulation. We examined whether oral administration of melatonin could normalize the melatonin secretion and have beneficial effects on OXYS rats before progression to AD-like pathology. The results showed that melatonin treatment restored melatonin secretion in the pineal gland of OXYS rats as well as the serum levels of growth hormone and IGF-1, the level of BDNF in the hippocampus and the healthy state of hippocampal neurons. Additionally, melatonin treatment of OXYS rats prevented an increase in anxiety and the decline of locomotor activity, of exploratory activity, and of reference memory. Thus, melatonin may be involved in AD progression, whereas oral administration of melatonin could be a prophylactic strategy to prevent or slow down the progression of some features of AD pathology.
OXYS rats are characterized by early development of cataract and chorioretinal degeneration with clinical manifestations similar to those observed in senile cataract and age-associated macular degeneration in humans. According to fundoscopy findings, the incidence of chorioretinal degeneration sharply increases in OXYS rats by the age of 4.5 months, when all animals develop signs of fundus oculi pathology. Morphological analysis of semithin sections of the posterior wall of the eye in OXYS rats aged 5 months showed that choroid vessels, pigmented epithelium, and radial glia were most vulnerable to injury. Retinal hypoxia and destruction of the pigmented epithelium associated with circulatory disorders in the choroid vessels presumably lead to injuries of the neurosensory cells (mainly the external segments) and a 3.5-fold increase in the percent of photoreceptors with nuclear pyknosis in comparison with the control. These results indicate that OXYS rats represent an adequate model of age-associated macular degeneration and can be used for studies of the pathogenesis of this condition and development of methods for its treatment and prevention.
It has been documented that Ca2+ overload and increased production of reactive oxygen species play the significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyroptosis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. Angiotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of neutrophils, monocytes, CD4+ T-cells and platelets contribute to cardiac ischemia/reperfusion injury. Our review outlines the role of these factors in reperfusion cardiac injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.