AIMTo study the effects of linagliptin on the structural signs of non-alcoholic fatty liver disease (NAFLD) in db/db mice.METHODSMale diabetic db/db mice (BKS.Cg-Dock7m+/+Leprdb/J) aged 10 wk received the dipeptidyl peptidase 4 (DPP4) inhibitor linagliptin (10 mg/kg) or saline as a placebo once per day by gavage for 8 wk. Intact db/db mice served as controls. Structural changes in the liver were analyzed from light and electron microscopic images of sections from intact, placebo-treated and linagliptin-treated animals. We estimated the changes in hepatocytes, sinusoidal cells, liver microvasculature and lymphatic roots. Hepatic staining for lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) was assessed by immunohistochemistry.RESULTSIn 18-wk-old diabetic mice, liver steatosis (predominantly microvesicular and mediovesicular steatosis) was accompanied by dilation of the roots of the lymphatic system, interlobular blood vessels and bile canaliculi. Compared to saline-treated mice, linagliptin-treated mice exhibited a reduction in the mean numeral densities of hepatocytes with lipid droplets (92.4% ± 1.7% vs 64.9% ± 5.8% per field of view, P = 0.0002) and a lower proportion of hepatocytes with a high density of lipid droplets (20.7% ± 3.6% vs 50.4% ± 3.1%, P = 0.0007). We observed heterogeneous hepatocytes and relatively preserved cell structures in the linagliptin group. Dilation of blood and lymphatic vessels, as well as ultrastructural changes in the hepatocyte endoplasmic reticulum and mitochondria, were alleviated by linagliptin treatment. In intact and placebo-treated mice, immunohistochemical staining for LYVE-1 was observed in the endothelial cells of interlobular lymphatic vessels and on the membranes of some endothelial sinusoidal cells. We observed an enlarged LYVE-1 reaction area in linagliptin-treated mice compared to intact and placebo-treated mice. The improvement in the structural parameters of the liver in linagliptin-treated mice was independent to changes in the plasma glucose levels.CONCLUSIONThe DPP4 inhibitor linagliptin alleviates liver steatosis and structural changes in the hepatic microvasculature and lymphatic roots in a model of NAFLD in diabetic db/db mice.
Obesity and diabetes mellitus are known to lead to the development of metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). The mechanisms of programmed cell death are actively involved in maintaining cellular homeostasis along development of NAFLD. Proteins of the BCL-2 family are key regulators of physiological and pathological apoptosis. Homozygous males of BKS.Cg-Dock7 m Lepr db /+/+/J mice (db/db mice) are charac terized by progressive obesity and the development of type 2 diabetes mellitus (DM2) with severe hyperglycemia at 4-8 weeks and organ lesions at 8-10 weeks of age. The aim of this research was to study the expression of mo lecular cell regulators of apoptosis in liver cells of db/db mice males at different stages of obesity and diabetes development (at the age of 10 and 18 weeks). Immunohistochemical analysis (using the indirect avidin-biotin peroxidase method) and morphometric evaluation of the expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bad in liver cells of studied animals at different stages of obesity and DM2 were carried out. An excess of the value of the Bcl-2 protein staining area over the Bad protein staining area was revealed in the liver of 10-week-old animals. The Bcl-2/Bad expression area ratio in 10-week-old animals was twice as high as in 18-week-old animals, which indicates the presence of conditions for blocking apoptosis in the liver of younger db/ db mice. At the 18th week of life, db/db mice displayed an almost threefold increase in the expression area of the Bad protein against the background of an unchanged expression of the Bcl-2 protein. The decrease in the Bcl-2/Bad staining area ratio in 18-week-old animals was due to the increase in the Bad expression area, which indicates the absence of antiapoptotic cell protection and creates conditions for activation of the mitochondrial pathway of apoptosis in the liver of male db/db mice with pronounced signs of obesity and DM2.
We studied the effects of melatonin on the status of immune organs and parameters of lipid metabolism in rats with alimentary obesity and parameters of lipid metabolism and immune status in Wistar rats kept on high-fat diet and receiving melatonin solution per os. Melatonin leveled the changes in blood and liver parameters of lipid metabolism, which was paralleled by normalization of cellular composition of immune organs. We conclude that melatonin can be a promising agent for the treatment of lipid metabolism and immune status disorders in alimentary obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.