It has been established previously that up to 40% of mouse CD34+ hematopoietic stem cells are capable of internalizing exogenous dsDNA fragments both in vivo and ex vivo. Importantly, when mice are treated with a combination of cyclophosphamide and dsDNA, the repair of interstrand crosslinks in hematopoietic progenitors is attenuated, and their pluripotency is altered. Here we show for the first time that among various actively proliferating mammalian cell populations there are subpopulations capable of internalizing dsDNA fragments. In the context of cancer, such dsDNA-internalizing cell subpopulations display cancer stem cell-like phenotype. Furthermore, using Krebs-2 ascites cells as a model, we found that upon combined treatment with cyclophosphamide and dsDNA, engrafted material loses its tumor-initiating properties which we attribute to the elimination of tumor-initiating stem cell subpopulation or loss of its tumorigenic potential.
Glioblastoma is one of the most aggressive brain tumors. Given the poor prognosis of this disease, novel methods for glioblastoma treatment are needed. Virotherapy is one of the most actively developed approaches for cancer therapy today. VV-GMCSF-Lact is a recombinant vaccinia virus with deletions of the viral thymidine kinase and growth factor genes and insertions of the granulocyte–macrophage colony-stimulating factor and oncotoxic protein lactaptin genes. The virus has high cytotoxic activity against human cancer cells of various histogenesis and antitumor efficacy against breast cancer. In this work, we show VV-GMCSF-Lact to be a promising therapeutic agent for glioblastoma treatment. VV-GMCSF-Lact effectively decreases the viability of glioblastoma cells of both immortalized and patient-derived cultures in vitro, crosses the blood–brain barrier, selectively replicates into orthotopically transplanted human glioblastoma when intravenously injected, and inhibits glioblastoma xenograft and metastasis growth when injected intratumorally.
Poorly differentiated cell populations including tumor-initiating stem cells have been demonstrated to display a unique ability to natively internalize fragmented double-stranded DNA. Using this feature as a marker, we show that 0.1% to 6% of human glioblastoma cells from the bioptates can effectively internalize a fluorescently labeled DNA probe. Of these, using samples from 3 patients, 66% to 100% cells are also positive for CD133, a well-established surface marker of tumor-initiating glioma stem cells. Using the samples from primary malignant brain lesions (33 patients), we demonstrate that tumor grading significantly correlates (R = .71) with the percentage of DNA-internalizing cells. No such correlation is observed for relapse samples (18 patients).
Besides initiation of tumor-specific T cell immunity, dendritic cells (DCs) are endowed with tumoricidal activity. Previously, we showed that monocyte-derived DCs of high-grade glioma patients generated in the presence of interferon alpha (IFNα) (IFN-DCs) have impaired cytotoxic activity against tumor necrosis factor alpha (TNFα)-sensitive HEp-2 tumor cells. Herein, we demonstrate that decreased transmembrane TNFα (tmTNFα) expression, but not soluble TNFα (sTNFα) production by high-grade glioma patient IFN-DCs, determines the defective tumoricidal activity against TNFα-sensitive HEp-2 cells. Blocking TNFα-converting enzyme or stimulation of patient IFN-DCs with rIL-2 or dsDNA enhances tmTNFα expression on IFN-DCs and significantly increases their cytotoxicity. Decreased tmTNFα expression on patient IFN-DCs is not caused by downregulation of pNFκB. Neither rIL-2 nor dsDNA upregulates tmTNFα expression on patient IFN-DCs via an increase of pNFκB. The current study shows an important role of tmTNFα as mediator of IFN-DC tumoricidal activity and as molecular target for the restoration of defective DC killer activity in high-grade glioma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.