Abstract. The aim of the work is to show the effect of layer thickness on the features of the morphology and optical properties of MoS2 nanostructures, including the monomolecular layers, formed during the gas transporting transfer of sulfur vapors to the reactor hot zone with a molybdenum metal and subsequent deposition on the mica (muscavite) substrates. The results of the atomic force microscopy, optical absorption spectroscopy and Raman spectroscopy of molybdenum disulfide nanostructures of different thickness, obtained in temperatures interval of gas transport synthesis 525-600°C, show that a monomolecular MoS2 layers, containing trigonal domains and having a width of the band gap 1.84 eV at a direct-gap optical transition with the formation of excitons at room temperature, can be obtained. For the first time, fractal-like substructures were obtained, in the Raman spectra of which the values of the modes of intralayer and interlayer oscillations E12g 377.5 cm-1 and A1g 403.8 differ not only from the corresponding values of the modes of the monomolecular layer, but also from the known values of bulk samples. The frequency of the intralayer mode in these samples, E12g 377.5 cm-1, is the smallest of all known values.
PdO films were obtained by thermal deposition of palladium metal with a thickness of 30 and 90 nm, followed by its oxidation in air at different temperatures. PdO oxide films are characterized by transmission electron microscopy (TEM) and reflection high-energy electron diffraction (RHEED). Data on the semiconductor properties and gas sensitivity to different concentrations of ozone in the air are obtained. The optimal temperature conditions for the oxidation of the films are established, which ensure their uniform phase composition and the absence of electrical noise during the detection of gases. The mechanism of the electrical noise appearance in ultrathin films associated with their fragmentation during oxidative annealing is proposed and justified. The possibility of detecting ozone impurities in the air below the maximum permissible concentration (MPC) by PdO semiconductor films is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.