Исследована магнитострикция гексагональных монокристаллов HoMnO 3 и YMnO 3 в широком диапазоне приложенных магнитных полей до H = 14 T для всех возможных комбинаций ориентации магнитного поля H и магнитострикции L/L. Результаты измерений L/L(H, T ) хорошо согласуются с магнитной фазовой диаграммой монокристалла HoMnO 3 , приведенной ранее другими авторами. Показано, что немонотонное поведение магнитострикции монокристалла HoMnO 3 обусловлено ионом Ho 3+ , при этом магнитный момент иона Mn 3+ параллелен гексагональной оси кристалла. Аномалии, обнаруженные в магнитострикционных измерениях HoMnO 3 , хорошо коррелируют с фазовой диаграммой этих соединений. Для изоструктурного монокристалла YMnO 3 с немагнитным редкоземельным ионом зависимости L/L(H, T ) хорошо описы-ваются обычным квадратичным законом для широкого диапазона температур (4−100 K). Кроме того, в работе проведена качественная оценка магнитострикционного эффекта при учете влияния кристаллического электрического поля на ион гольмия.Работа поддержана Российским фондом фундаментальных исследований, грант № 16-32-00163.
The magnetic structure of the polymorphic modification of iron oxide ε-Fe2O3 is collinear ferrimagnetic in the range from room temperature to ~ 150 K. Further, with decreasing a temperature in ε-Fe2O3, a magnetic transition occurs, accompanied by a significant decrease in the coercive force HC, and in the low temperature range ε-Fe2O3 is characterized by a complex incommensurate magnetic structure. In this work, we experimentally investigated the processes of dynamic magnetization reversal of ε-Fe2O3 nanoparticles of an average size of 8 nm in the temperature range of 80–300 K, comprising various types of magnetic structure of this iron oxide. A bulk material was studied - xerogel SiO2 with ε Fe2O3 nanoparticles embedded in pores. To measure the magnetic hysteresis loops under dynamic magnetization reversal, a pulsed magnetic field technique of Hmax up to 130 kOe was used, using the method of discharging a capacitor bank through a solenoid. The coercive force of HC during dynamic magnetization reversal noticeably exceeds HC for quasi-static conditions. This is caused by processes of superparamagnetic relaxation of the magnetic moments of particles during pulsed magnetization reversal. In the range from room temperature to ~ 150 K, the rate of change of the external field dH / dt is the main parameter determining the behavior of the coercive force under the conditions of dynamic magnetization reversal. This behavior is expected for a system of single-domain ferro- and ferrimagnetic particles. Under external conditions (at a temperature of 80 K), when the magnetic structure of ε Fe2O3 is incommensurate, the coercive force during pulsed magnetization reversal already depends on the parameter dH / dt, and is largely determined by the maximum applied field Hmax. Such a behavior, atypical for systems of ferrimagnetic particles, is already caused by dynamic spin processes inside ε-Fe2O3 particles during fast magnetization reversal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.