Предложена численная схема решения граничного гиперсингулярного интегрального уравнения, возникающего в краевой задаче Неймана для уравнения Гельмгольца. Схема основана на выделении в явном виде главной особенности в ядре. При дискретизации граничного интегрального уравнения возникает система линейных уравнений, коэффициенты которой представляются в виде суммы сильно сингулярных и слабо сингулярных интегралов. Указанные сильно сингулярные интегралы понимаются в смысле конечного значения по Адамару и вычисляются аналитически в случае, когда поверхность аппроксимируется ячейками таким образом, что края всех ячеек имеют вид пространственных многоугольников (не обязательно плоских). Для слабосингулярных интегралов предложены квадратурные формулы типа прямоугольников со сглаживанием особенности. Построенная численная схема протестирована на следующих модельных примерах: при решении гиперсингулярного уравнения на сфере (осуществлялось сравнение численных решений с аналитическими решениями интегрального уравнения, получаемыми из спектральных соотношений); при решении задач дифракции акустической волны на жестких сфере и диске (осуществлялось сравнение характеристик акустического поля в дальней зоне, полученных на основе численного решения задачи, с известными теоретическими и численными данными). A numerical method for solving a boundary hypersingular integral equation arising from the Neumann boundary value problem for the Helmholtz equation is proposed. The proposed numerical method is based on the explicit separation of the hypersingular main part in the kernel of the integral equation. After discretization, this boundary integral equation is reduced to a system of linear algebraic equations. The coefficients of this system are represented as the sums of hypersingular and weakly singular integrals. The hypersingular integrals are understood in the sense of the finite Hadamard value and are calculated analytically. A number of quadrature formulas for the weakly singular integrals are developed using the smoothing procedures for singularity. The proposed numerical scheme is tested on the basis of the following model examples: a hypersingular integral equation on a sphere and the problems of diffraction of acoustic waves on inelastic spheres and discs. The numerical solutions obtained are compared with existing analytical and numerical data.
Some problems of diffraction of a monochromatic acoustic wave on surfaces of complex shapes are considered. To solve such problems, an approach is applied, in which the problem is reduced to a boundary hypersingular integral equation, where the integral is understood in the sense of a finite value according to Hadamard. Such approach allows solving diffraction problems both on solid objects and on thin screens. To solve the integral equation, the method of piecewise constant approximations and collocations, developed in the previous works of the author, is used. In the present study, examples of modeling the diffraction of an acoustic wave by bodies with partial filling are given. It is shown how the filling of bodies influences the acoustic pressure field, and the field direction patterns are given. An example of applying this approach to solving the problem of sound propagation in an urban area is also given: the diffraction of an acoustic wave from a point source on a system of buildings is considered. The presented results demonstrate that this method allows constructing reflected fields and analyze their characteristics on surfaces of complex shapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.