One of the important tasks for increasing the efficiency of photovoltaic (PV) system is the development and improvement of the maximum power point tracking algorithms (MPPT). These MPPT algorithms lead to the ability to catch efficiently the global maximum power point of the partially shaded PV array. One of these trackers is the particle swarm optimization (PSO) algorithm which is one of the Soft computing techniques. The conventional PSO based trackers have many advantages such as the simplicity of hardware implementation and independence from the installed system. The actual problem of the practical application of PSO is the determination of its parameters to ensure high effectiveness of extracting the global MPP. Analysis of scientific papers devoted to the PSO algorithm has shown that there is currently no methodology for the optimal parameters' selection of PSO algorithm based maximum power trackers for the PV system. This paper aims to create a convenient and reasonable method for choosing the optimal parameters of the PSO algorithm, taking into account the topology and parameters of the DC-DC converter and the configuration of solar panels. A new method for selecting the parameters of a buck converter connected to a battery has been presented. The optimal value of the sampling time for the digital MPP controllers, providing their maximum performance; has been determined based on a new methodology. Matlab/Simulink software package is used as the main research tool. The prominent outcomes identify that the modified PSO and its designed parameters best meet the requirements of the MPPT controller for the PV system.
A model developed at the University of Tomsk, Russia, for high latitudes (over 55° N) is proposed and applied to the analysis and observation of the solar resource in the state of Sonora in the northwest of Mexico. This model utilizes satellite data and geographical coordinates as inputs. The objective of this research work is to provide a low-cost and reliable alternative to field meteorological stations and also to obtain a wide illustration of the distribution of solar power in the state to visualize opportunities for sustainable energy production and reduce its carbon footprint. The model is compared against real-time data from meteorological stations and satellite data, using statistical methods to scrutinize its accuracy at local latitudes (26–32° N), where a satisfactory performance was observed. An annual geographical view of available solar radiation against maximum and minimum temperatures for all the state municipalities is provided to identify the photovoltaic electricity generation potential. The outcomes are proof that the model is economically viable and could be employed by local governments to plan solar harvesting strategies. The results are generated from an open source model that allows calculating the available solar radiation over specific land areas, and the application potential for future planning of solar energy projects is evident.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.