We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in nine filters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Å to the z band (∼ 9160 Å). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He II λ1640 and λ4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with τ ∝ λ 4/3 . However, the lags also imply a disk radius that is 3 times larger than the prediction from standard thin-disk theory, assuming that the bolometric luminosity is 10% of the Eddington luminosity (L = 0.1L Edd ). Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lags due to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination (∼ 20%) can be important for the shortest continuum lags, and likely has a significant impact on the u and U bands owing to Balmer continuum emission.
We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hβ reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hβ emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) R BLR -L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hβ time-delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.
We determine interband lags between variations in the B band and variations in the V, R, and I bands for 14 active galactic nuclei observed at the Crimean Astrophysical Observatory. The computed lags range from tenths of a day to several days, and it is positive (that is, V, R, and I bands lag behind the B band) in most cases, except for a few cases for the V filter. In some cases, the lag is greater than zero, with more than 3 confidence. The lag is systematically less for the V filter than for the red filters, and the lag determined from the cross-correlation function (CCF) centroid is systematically greater than the lag determined from the CCF peak. We find that the lag scales with luminosity as L b , where b % 0:4-0.5. We attribute this lag to the light time travel effect, so it reflects the geometrical size of the region that emits optical continuum. We consider a model in which optical emission is mainly reprocessed emission that arises in the accretion disk heated by an X-ray source above the disk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.