The energy deposited in resist during its exposure by ion beam was simulated for ions from a set of rare gases and for gallium. It was shown that the distribution of energy density can be approximated by the product of two Gaussian functions. One of them describes the lateral distribution of energy, the second – the dependence on depth. The widths and centres of these Gaussian functions are determined by the energy length (also mentioned in the literature as "Range" or "mean length of trajectories"), the mass of ions and the average atomic number of resist. The obtained description would make it possible to estimate the size of the resist modified volume for any type of ion with energy of tens keV. So it can be used for a priori estimates of resolution and performance, as well as for the choice of beam energy and ion type based on this.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.