SS-68 is a derivative of indole, which demonstrated strong antiarrhythmic effects not associated with significant QT prolongation in dog models of atrial fibrillation. Therefore, SS-68 was proposed as a new antiarrhythmic drug and the present study is the first describing its effects on action potentials (APs) configuration and elucidating the ionic mechanisms of these effects. Sharp microelectrodes were used to record APs in isolated preparations of mouse atrial and ventricular myocardium. In both types of myocardium 10(-6) M SS-68 produced reduction of AP duration, 3 × 10(-6) M failed to alter AP waveform and 10(-5) - 3 × 10(-5) M prolonged APs. Sensitivity of main ionic currents to SS-68 was determined using whole-cell patch clamp. Transient potassium current Ito was slightly inhibited by SS-68 with IC50 = 1.43 × 10(-4) M. IKur was more sensitive with IC50 = 1.84 × 10(-5) M. Background inward rectifier showed very low sensitivity to SS-68 - only 10(-4) M SS-68 caused significant reduction of IK1. ICaL was significantly inhibited by 10(-6)M - 3 × 10(-5) M SS-68. The IC50 value for the ICaL was 1.84 × 10(-6) M. Thus, main ionic currents of mouse cardiomyocytes are inhibited by SS-68 in the following order of potency: ICaL > IKur > Ito > IK1. While lower concentration of SS-68 shorten APs via suppression of ICaL, higher concentrations inhibit K(+)-currents leading to APs prolongation.
The compound SS-68 has been selected among numerous new derivatives of indole and demonstrated antiarrhythmic effects in animal models. The present study concerns several aspects of SS-68 safety and efficacy as a potential antiarrhythmic drug. The first estimation of atrioventricular conduction in mammalian heart under SS-68 has been carried out; effects of SS-68 in Purkinje fibers and myocardium of pulmonary veins have been investigated. The drug weakly affects cardiac atrioventricular conduction: only high concentrations of SS-68 (≥10 μmol/L) significantly decrease this parameter. Also, the drug weakly affects Purkinje fibers automaticity, but effectively alters action potential waveform in Purkinje fibers in a concentration-dependent manner. SS-68 (0.1-100 μmol/L) failed to induce any early or delayed afterdepolarizations in Purkinje fibers both in basal conditions and under provocation of proarrhythmic activity by norepinephrine (NE). Moreover, 10 μmol/L SS-68 suppressed NE-induced extra-beats and rapid firing in Purkinje fibers. In pulmonary veins only high concentrations of SS-68 significantly increased action potential duration, while lower concentrations (0.1-1 μmol/L) were ineffective. Also, 0.1-100 μmol/L SS-68 was unable to elicit arrhythmogenic alternations of action potential waveform in pulmonary veins. In conclusion, SS-68 has no proarrhythmic effects, such as afterdepolarizations or abnormal automaticity in used experimental models.
Introduction. The problem of heart rhythm disturbances is one of the most urgent topics of modern cardiology. According to the currently available concepts, 1,2- and 1,3-disubstituted aminoindole derivatives, which compound 2-phenyl-1-(3-pyrrolidin-1-il-propyl)-1H-indole hydrochloride (SS-68) belongs to, are a promising chemical group in terms of their cardio-pharmacological activity. Materials and methods. To study the anti-arrhythmic activity of SS-68 compound, the following models were used: 1) Models of cardiogenic arrhythmia: aconitine-inducedic, calcium chloride-induced, barium chloride-induced, cesium chloride-induced, adrenaline model of arrhythmia, strophanthine-induced arrhythmias, as well as arrhythmias caused by electrostimulation and acute myocardial ischemia; 2) neurogenic arrhythmias: arrhythmias caused by administration of aconitine, strophanthine K, cesium chloride into the IV ventricle of the brain and also by applying carbachol on the somatosensory cortex. To assess the antianginal activity of SS-68 in various models, the effect of this drug and comparators on the intact and ischemic myocardium was studied. Results. It was found that with cardiogenic arrhythmias, SS-68 compound exhibits a pronounced antiarrhythmic effect and brings to normal the electrophysiological pattern of the heart, in most cases exceeding the analogous effect of reference drugs (amiodarone, lidocaine, aymaline, ethacizine, etmozine, quinidine anaprilin). In neurogenic arrhythmias, SS-68 also had a stopping effect, and, in addition, reduced the epileptiform activity of the brain in the model with the application of carbachol on the somatosensory cortex. In the study of antianginal and coronary vasolidating activities, SS-68 demonstrated pronounced thrombolytic and anti-ischemic activities, manifested in an increase in the coronary blood flow, a positive effect on ST-segment depression, and a decrease in the area of necrosis in experimental myocardial infarction. Discussion. The antiarrhythmic and antianginal activities of SS-68 compound create the prerequisites for further study of the pharmacological properties of this molecule. In addition, it seems appropriate to continue studying the pharmacodynamics, pharmacokinetics and molecular mechanisms of SS-68 action. Conclusions. SS-68 compound is a promising pharmacological agent with a high activity towards various electrophysiological disorders in the heart, and, in addition, it has significant antiischemic and coronary vasolidating properties.
Introduction. In previous studies on different animal models, it was shown that compound N-(N-butylpyrrolidine)-2-phenylindole hydrochloride (SS-68) has a broad antiarrhythmic activity. The molecular mechanisms of the pharmacological action of SS-68 were chosen as the focus for this study. Materials and methods. The study of the molecular basis of the pharmacological action of SS-68 was based on 1) molecular docking with the determination of the affinity constant for κ1-opioid receptors; 2) recording the fluorescence of a culture of cardiomyocytes with the determination of the effect of SS-68 on ionic homeostasis; 3) determining the negative chronotropic action in vitro; 4) studying the effect of SS-68 on the transmembrane ion currents of isolated unidentified neurons of the large pond snail (Lymnaeastagnalis), orb snail (Planorbariuscorneus) and rat hippocampal neuron cultures. Results. 1) In experiments using molecular docking, the affinity of SS-68 for κ1-opioid receptors is significantly higher than that of butorphanol, but lower than that of (-)-U-50.488; 2) In spontaneously excited preparations of the right atrium, SS-68 causes an irreversible negative chronotropic effect. In experiments on atrial myocardium in rats, SS-68 is capable of demonstrating the ability to block M2 and M3-cholinergic receptors; 3) When studying the effects on cardiac myocyte ion currents, it was shown that SS-68 has moderate Na+, K+ and Ca2+ – blocking activity; 4) In the study of isolated neurons, it was shown that SS-68 influences the electrophysiology of neurocytes in a dose-dependent manner. Discussion. The study of the molecular basis of the action of SS-68 showed that this compound has a pleiotropic multitarget effect, which consists of, at least, the effect on Na+, Ca2+ and K+-homeostasis of cardiomyocytes and neurons, M2-, M3-cholinergic receptors, and κ1-opioid receptors. Conclusion. From the point of view of molecular pharmacology, SS-68 can be attributed to an antiarrhythmic drug with a mixed type of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.