The Chavy–Waddy–Kolokolnikov model for the description of bacterial colonies is considered. In order to establish if the mathematical model is integrable, the Painlevé test is conducted for the nonlinear ordinary differential equation which corresponds to the fourth-order partial differential equation. The restrictions on the mathematical model parameters for ordinary differential equations to pass the Painlevé test are obtained. It is determined that the method of the inverse scattering transform does not solve the Cauchy problem for the original mathematical model, since the corresponding nonlinear ordinary differential equation passes the Painlevé test only when its solution is stationary. In the case of the stationary solution, the first integral of the equation is obtained, which makes it possible to represent the general solution in the quadrature form. The stability of the stationary points of the investigated mathematical model is carried out and their classification is proposed. Periodic and solitary stationary solutions of the Chavy–Waddy–Kolokolnikov model are constructed for various parameter values. To build analytical solutions, the method of the simplest equations is also used. The solutions, obtained in the form of a truncated expansion in powers of the logistic function, are represented as a closed formula using the formula for the Newton binomial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.