The subject of research in the paper is the problem of developing methods of signal processing in a multiradar system of the same type of two-coordinate surveillance radars with mechanical rotation. The aim of the paper is to improve the quality of detection of air objects by combining the same type of two-coordinate radars in a multi-radar system. It is proposed to combine the existing surveillance radar stations into a spatially spaced coherent multi-radar system. The synthesis of optimal detectors of coherent and incoherent signals is carried out. The characteristics of detection of air objects in a multi-radar system with compatible signal receiving have been evaluated. The obtained results: the addition of the second radar, regardless of the degree of signal coherence, showed the greatest efficiency in the gain in terms of signal / noise, the optimal number of radars in the multi-radar system is not more than four. The expected signal / noise threshold gain in a system of four radars can be up to eighteen decibels for a system with coherent signals and up to eleven decibels for a system with incoherent signals. The using of more than four radars is impractical.
Currently, human operators provide cognition in a radar system. However, advances in the “digitization” of radar front-ends, including digital arbitrary waveform generators (AWG) and advanced high performance embedded computing (HPEC) make it possible to vary all key radar parameters (power, pulse length, number of pulses, pulse repetition frequency (PRF), modulation, frequency, polarization) on a pulse-by-pulse basis within ns or ms and over a wide operating range. This timescale is much faster than the decision-making ability of a human operator. The cognitive-inspired techniques in radar, that are intensively developing last years, mimic elements of human cognition and the use of external knowledge to use the available system resources in an optimal way for the current goal and environment. Radar systems based on the perception-action cycle of cognition that senses the environment, learns relevant information from it about the target and the background and then adapts the radar to optimally satisfy the needs of the mission according to a desired goal are called cognitive radars. In the article, recent ideas and applications of cognitive radars were analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.