The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ
1(ν) whose magnitude exponentially decreases while cooling. With increasing frequency, dispersionless conductivity starts to reveal a power-law dependence σ
1(ν)∝ν
s with s < 1 caused by hopping charge carriers. At low temperatures, such Universal Dielectric Response can cross over to another universal regime with nearly constant loss ε″∝σ1/ν = const. The powerful research potential based on such universalities is widely used in condensed matter physics. Here we study the broad-band (1–1012 Hz) dielectric response of Shewanella oneidensis MR-1 extracellular matrix, cytochrome C and serum albumin. Applying concepts of condensed matter physics, we identify transport mechanisms and a number of energy, time, frequency, spatial and temperature scales in these biological objects, which can provide us with deeper insight into the protein dynamics.
For decades respiratory chain and photosystems were the main firing field of the studies devoted to mechanisms of electron transfer in proteins. The concept of conjugated lateral electron and transverse proton transport during cellular respiration and photosynthesis, which was formulated in the beginning of 1960-s, has been confirmed by thousands of experiments. However, charge transfer in recently discovered bacterial nanofilaments produced by various electrogenic bacteria is regarded currently outside of electron and proton conjugation concept. Here we report the new study of charge transfer within nanofilaments produced by Shewanella oneidensis MR-1 conducted in atmosphere of different relative humidity (RH). We utilize impedance spectroscopy and DC (direct current) transport measurements to find out the peculiarities of conductivity and Raman spectroscopy to analyze the nanofilaments’ composition. Data analysis demonstrates that apparent conductivity of nanofilaments has crucial sensitivity to humidity and contains several components including one with unusual behavior which we assign to electron transport. We demonstrate that in the case of Shewanella oneidensis MR-1 charge transfer within these objects is strongly mediated by water. Basing on current data analysis of conductivity we conclude that the studied filaments of Shewanella oneidensis MR-1 are capable of hybrid (conjugated) electron and ion conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.