Immunofluorescence studies have revealed that H2AX is phosphorylated at the sites of DNA double-strand breaks induced by ionizing radiation and is required for recruitment of repair factors into nuclear foci after DNA damage. Therefore, the function of H2AX is believed to be associated primarily with repair of DNA damage. Here, we report a function of H2AX in cellular apoptosis. Our data showed that H2AX is phosphorylated by UVA-activated JNK. We also provided evidence showing that UVA induces caspase-3 and caspase-activated DNase (CAD) activity in both H2AX wild-type and H2AX knockout mouse embryonic fibroblasts (MEFs). However, DNA fragmentation occurred only in H2AX wild-type MEFs. Furthermore, H2AX phosphorylation was critical for DNA degradation triggered by CAD in vitro. Taken together, these data indicated that H2AX phosphorylation is required for DNA ladder formation, but not for the activation of caspase-3; and the JNK/H2AX pathway cooperates with the caspase-3/CAD pathway resulting in cellular apoptosis.
RNF2, also known as Ring1B/Ring2, is a component of the polycomb repression complex 1 (PRC1). RNF2 is highly expressed in many tumors, suggesting that it might have an oncogenic function, but the mechanism is unknown. Here we show that knockdown of RNF2 significantly inhibits both cell proliferation and colony formation in soft agar, and induces apoptosis in cancer cells. Knockdown of RNF2 in HCT116 p53+/+ cells resulted in significantly more apoptosis than was observed in RNF2 knockdown HCT116 p53−/− cells, indicating that RNF2 knockdown-induced apoptosis is partially dependent on p53. Various p53-targeted genes were increased in RNF2 knockdown cells. Further studies revealed that in RNF2 knockdown cells, the p53 protein level was increased, the half-life of p53 was prolonged and p53 ubiquitination was decreased. In contrast, cells overexpressing RNF2 showed a decreased p53 protein level, a shorter p53 half-life and increased p53 ubiquitination. Importantly, we found that RNF2 directly binds with both p53 and MDM2 and promotes MDM2-mediated p53 ubiquitination. RNF2 overexpression could also increase the half-life of MDM2 and inhibit its ubiquitination. The regulation on p53 and MDM2 stability by RNF2 was also observed during the etoposide-induced DNA damage response. These results provide a possible mechanism explaining the oncogenic function of RNF2, and because RNF2 is important for cancer cell survival and proliferation, it might be an ideal target for cancer therapy or prevention.
Aims/IntroductionDysregulated inflammatory response is believed to be an important factor in the pathogenesis of several late complications of diabetes mellitus. β‐Glucans are potent inducers of immune function. The present randomized, double blind, two‐center, placebo‐controlled study was undertaken to explore safety, tolerability and efficacy of soluble β‐1,3/1,6‐glucan (SBG) as a local treatment of diabetic foot ulcers.Materials and MethodsA total of 60 patients with type 1 or 2 diabetes and lower extremity ulcers (Wagner grade 1–2, Ankle/Brachial Index ≥0.7) received SBG or a comparator product (methylcellulose) locally three times weekly up to 12 weeks in addition to conventional management scheme. A total of 54 patients completed the study.ResultsA tendency for shorter median time to complete healing in the SBG group was observed (36 vs 63 days, P = 0.130). Weekly percentage reduction in ulcer size was significantly higher in the SBG group than in the methylcellulose group between weeks 1–2, 3–4 and 5–6 (P < 0.05). The proportion of ulcers healed by week 12 was also in favor of SBG (59% vs 37%, P = 0.09), with a significantly higher healing incidence in the SBG group at week 8 (44% vs 17%, P = 0.03). SBG was safe and well tolerated. There was a clinically significant difference regarding the incidence of serious adverse events in favor of the SBG treatment.ConclusionsLocal treatment of diabetic lower extremity ulcers with β‐1,3/1,6‐polyglucose shows good safety results. This β‐glucan preparation shows promising potential as a treatment accelerating cutaneous healing. Further studies are required to confirm this effect. This trial was registered with ClinicalTrials.gov (no. NCT00288392).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.