Purpose An accurate differentiation of brain glioma grade constitutes an important clinical issue. Powerful non-invasive approach based on diffusion MRI has already demonstrated its feasibility in glioma grade stratification. However, the conventional diffusion tensor (DTI) and kurtosis imaging (DKI) demonstrated moderate sensitivity and performance in glioma grading. In the present work, we apply generalised DKI (gDKI) approach in order to assess its diagnostic accuracy and potential application in glioma grading. Methods Diffusion scalar metrics were obtained from 50 patients with different glioma grades confirmed by histological tests following biopsy or surgery. All patients were divided into two groups with low- and high-grade gliomas as grade II versus grades III and IV, respectively. For a comparison, trained radiologists segmented the brain tissue into three regions with solid tumour, oedema, and normal appearing white matter. For each region, we estimated the conventional and gDKI metrics including DTI maps. Results We found high correlations between DKI and gDKI metrics in high-grade glioma. Further, gDKI metrics enabled introduction of a complementary measure for glioma differentiation based on correlations between the conventional and generalised approaches. Both conventional and generalised DKI metrics showed quantitative maps of tumour heterogeneity and oedema behaviour. gDKI approach demonstrated largely similar sensitivity and specificity in low-high glioma differentiation as in the case of conventional DKI method. Conclusion The generalised diffusion kurtosis imaging enables differentiation of low- and high-grade gliomas at the same level as the conventional DKI. Additionally, gDKI exhibited higher sensitivity to tumour heterogeneity and tissue contrast between tumour and healthy tissue and, thus, may contribute as a complementary source of information on tumour differentiation.
Background: The use of magnetic resonance (MR) tractography in neurosurgery is becoming an increasingly common practice for noninvasive imaging of white matter pathways. The most common method of tract reconstruction is the deterministic algorithm of diffusion tensor magnetic resonance imaging (MRI). However, this method of reconstructing pathways has a number of significant limitations. The most important of them are the lack of the possibility of visualizing the intersecting fibers, the complexity of building tracts in the area of perifocal edema and in the immediate vicinity of the tumor borders. The method of MR tractography, based on obtaining a diffusion image with a high angular resolution (High Angular Resolution Diffusion Imaging, HARDI), using the constrained spherical deconvolution (CSD) algorithm for post-processing of data, makes it possible to avoid these disadvantages. Relatively recently, a new algorithm, Single-Shell 3-Tissue CSD (SS3TCSD), has been proposed for processing HARDI data, which has the potential to improve the reconstructing of pathways in the area of perifocal edema or edema-infiltration.Aim: To evaluate the potential of the new SS3TCSD algorithm compared to ST-CSD (Single-Tissue CSD) in the imaging of the optic radiation and visual tracts in patients with gliomas.Materials and methods: Diffusion and routine brain MRI was performed in 10 patients with newly diagnosed cerebral gliomas, followed by reconstruction of the optic radiation and visual tracts. We compared new algorithms for postprocessing MR tractography (ST-CSD and SS3TCSD) in imaging of the optic tract and visual radiation in patients with brain gliomas affecting various parts of the visual system.Results: The SS3T-CSD method showed a lower mean percentage of false positive tracts compared to the ST-CSD method: 19.75% for the SS3T-CSD method and 80.32% for the ST-CSD method in cases of proximity of the tumor to the tracts, 5.27% for the SS3T-CSD method and 25.27% for the STCSD method in cases of reconstructing tracts in healthy white matter.Conclusion: The SS3T-CSD method has a number of advantages over ST-CSD and allows for successful imaging of the optic pathways that have a complex structure and repeatedly change direction along their course.
Методы исследования и диагностики Methods of investigation and diagnostics
The study of plastic and energy metabolism and their correlation with various histologic types of brain gliomas. Assessment of heterogeneity tumor structure and adjacent brain tissues by comparing MRI and 11C-methionine and 18F-fluorodeoxyglucose PET/CT data. Materials and methods. 52 patients (M/F 27/25, average age 48±12 years) with gliomas were enrolled in this study: glioblastoma (n = 19), anaplastic astrocytoma (n=9), diffuse astrocytoma (n=9), anaplastic oligodendroglioma (n=6), oligodendroglioma (n=6). Research protocol consisted from MRI before (T2, T2-FLAIR, 3DT1 (FSPGR) and after contrast enhancement (2DT1 (SE)) and dynamic MET and FDG PET/CT.Quantification parameters were: tumor to normal index (T/N) at last 10 min of time-activity curve (reflects the activity of metabolic processes), T/N in first peak of maximum uptake (Pmax) during first 60sec of study (reflects delivery level of radiopharmaceutical agent). Measurements were made in three areas: 1 -tumor core, 2 -edema/infiltration, 3 -intact brain tissue in close vicinity to the tumor borders (outside the T2-FLAIR hyperintensity zone). Сomparison was made between areas 1 and 2, 2and 3, and with intact brain tissue reference; MET and FDG accumulation correlations were studied.Results. Significant differences in T/N MET between areas 1 and 2 were obtained in all gliomas (p <0.05). Pmax MET differed only in glioblastomas (p <0.0001) and oligodendrogliomas (p <0.05), which correlated with the high level of vascularization of these tumor types. T/N FDG significantly differed between area 2 and 3 (p <0.05), which might allow to evaluate the boundaries of infiltrative growth of glioma, with mandatory comparison with MRI. Strong stable correlations of plastic and energy metabolism (as well as high level of radiopharmaceutical agent delivery) in the core of astrocytomas (Grade II-III) (Rs 0.8, p <0.05) and edema/infiltration area around of glioblastomas (Rs 0.5, p = 0, 02) were found and proved the evolutionary theory of glioma growth. Conclusion.The patterns of MET/FDG distribution as well as plastic and energy metabolism correlations in different tumor areas (core and edema/infiltration) and intact brain tissue in close vicinity to the tumor borders bring us closer to understanding the fundamental metabolic processes of brain gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.