Memo is an evolutionarily conserved protein with a critical role in cell motility. We found that Memo was required for migration and invasion of breast cancer cells in vitro and spontaneous lung metastasis from breast cancer cell xenografts in vivo. Biochemical assays revealed that Memo is a copper-dependent redox enzyme that promoted a more oxidized intracellular milieu and stimulated the production of reactive oxygen species (ROS) in cellular structures involved in migration. Memo was also required for the sustained production of the ROS O2- by NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 1 (NOX1) in breast cancer cells. Memo abundance was increased in >40% of the primary breast tumors tested, was correlated with clinical parameters of aggressive disease, and was an independent prognostic factor of early distant metastasis.
An important step in the process of metastasis from the primary tumor is invasive spread into the surrounding stroma. Using an in vivo invasion assay, we have previously shown that imposed gradients of epidermal growth factor (EGF) or colony-stimulating factor-1 (CSF-1) can induce invasion through an EGF/CSF-1 paracrine loop between cancer cells and macrophages. We now report that invasion induced by other ligands also relies on this EGF/CSF-1 paracrine invasive loop. Using an in vivo invasion assay, we show that MTLn3 breast cancer cells overexpressing ErbB3 exhibit enhanced invasion compared with control MTLn3 cells in response to the ErbB3 ligand HRG-B1. The invasive response of both MTLn3-ErbB3 and transgenic MMTV-Neu tumors to HRG-B1 is inhibited by blocking EGF receptor, CSF-1 receptor, or macrophage function, indicating that invasiveness to HRG-B1 is dependent on the EGF/CSF-1 paracrine loop. Furthermore, we show that CXCL12 also triggers in vivo invasion of transgenic MMTV-PyMT tumors in an EGF/CSF-1-dependent manner. Although the invasion induced by HRG-B1 or CXCL12 is dependent on the EGF/CSF-1 paracrine loop, invasion induced by EGF is not dependent on HRG-B1 or CXCL12 signaling, showing an asymmetrical relationship between different ligand/receptor systems in driving invasion. Our results identify a stromal/tumor interaction that acts as an engine underlying invasion induced by multiple ligands.
IntroductionNeu (HER2/ErbB2) is overexpressed in 25% to 30% of human breast cancer, correlating with a poor prognosis. Researchers in previous studies who used the mouse mammary tumor virus Neu-transgenic mouse model (MMTV-Neu) demonstrated that the Neu-YB line had increased production of CXCL12 and increased metastasis, whereas the Neu-YD line had decreased metastasis. In this study, we examined the role of increased production of CXCL12 in tumor cell invasion and malignancy.MethodsWe studied invasion in the tumor microenvironment using multiphoton intravital imaging, in vivo invasion and intravasation assays. CXCL12 signaling was altered by using the CXCR4 inhibitor AMD3100 or by increasing CXCL12 expression. The role of macrophage signaling in vivo was determined using a colony-stimulating factor 1 receptor (CSF-1R) blocking antibody.ResultsThe Neu-YD strain was reduced in invasion, intravasation and metastasis compared to the Neu-YB and Neu deletion mutant (activated receptor) strains. Remarkably, in the Neu-YB strain, in vivo invasion to epidermal growth factor was dependent on both CXCL12-CXCR4 and CSF1-CSF-1R signaling. Neu-YB tumors had increased macrophage and microvessel density. Overexpression of CXCL12 in rat mammary adenocarcinoma cells increased in vivo invasion as well as microvessel and macrophage density.ConclusionsExpression of CXCL12 by tumor cells results in increased macrophage and microvessel density and in vivo invasiveness.
Our data suggest that gliomas express a SYK signaling network important in glioma progression, inhibition of which results in reduced invasion with slower tumor progression.
ARC (Apoptosis Repressor with Caspase recruitment domain) inhibits both death receptor- and mitochondrial/ER-mediated pathways of apoptosis. While expressed mainly in terminally differentiated cells, ARC is markedly upregulated in a variety of human cancers, where its potential contributions have not yet been defined. In this study, we provide evidence of multiple critical pathophysiological functions for ARC in breast carcinogenesis. In the polyoma middle T-antigen (PyMT) transgenic mouse model of breast cancer, where endogenous ARC is strongly upregulated, deletion of the ARC-encoding gene nol3 decreased primary tumor burden without affecting tumor onset or multiplicity. More notably, ARC deficiency also limited tumor cell invasion and the number of circulating cancer cells, markedly reducing the number of lung metastases. Conversely, ectopic overexpression of ARC in a PyMT-derived metastatic breast cancer cell line increased invasion in vitro and lung metastasis in vivo. We confirmed these results in a humanized orthotopic model based on MDA-MB-231-derived LM2 metastatic breast cancer cells, in which RNAi-mediated knockdown of ARC levels was demonstrated to reduce tumor volume, local invasion, and lung metastases. Lastly, we found that endogenous levels of ARC conferred chemoresistance in primary tumors as well as invading cell populations. Our results establish that ARC promotes breast carcinogenesis by driving primary tumor growth, invasion and metastasis as well as by promoting chemoresistance in invasive cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.