The problem of developing optimal-design electromagnetic valves is relevant for many industries. The development of technology is characterized by increased power and pressures used for actuator mechanisms, as well as by reducing the dimensions and mass of automatic units. The goal of this article is to develop an advanced electromagnetic valve that would ensure optimal combination of high performance, reliability, technological effectiveness and minimal cost. On the basis of standard dependences for electromagnetic phenomena a mathematic model of a SU.1 valve was developed. It was calculated in several special-purpose software packages: NISA, FEMM, ANSYS Maxwell. Parametric analysis was implemented in ANSYS Maxwell for variable working gap settings and values of current force in the solenoid. As a result, the magnetic induction distribution field was obtained. The results of modeling the operation of the electromagnetic valve and the magnetic induction distribution field are presented for variable working gap settings and different values of current force in the solenoid. The model of an advanced electromagnetic valve for a liquid rocket engine was developed on the basis of the dependences obtained. The duration of single engine firing obtained is 40 msec. The results obtained make it possible to create a valve with hold-open time of 800msec, which is considered sufficient for application in electromagnetic direct current valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.