Species of the genus Lathyrus L. are known as forage and medicinal plants, widely used in traditional medicine and homeopathy. The content of protein, essential amino acids and carotene in their green biomass is higher than in other annual leguminous plants traditionally cultivated in Russia. Until now, the requirements for the crop's quality were reduced to a high content of protein and dry matter in seeds and herbage. In-depth biochemical analysis of accessions from the collection of plant genetic resources will significantly improve selection of source materials for breeding. Such tasks can be solved using gas chromatography with mass spectrometry in plant diversity studies. In view of the above, our goal was to analyze organic acids, free amino acids and secondary metabolites in green biomass of Lathyrus to facilitate comprehensive assessment of its forage and pharmacological value. We analyzed 32 accessions of Lathyrus sativus L., L. tuberosus L., L. sylvestris L., L. vernus (L.) Bernh., L. latifolius L. and L. linifolius (Reichard) Bassler from the collection of the Vavilov Institute (VIR). The studied Lathyrus accessions had significant interspecific and intraspecific variability both in the composition (presence) and number of the identified compounds. The analysis of plants across different years confirmed that biochemical parameters depended on weather conditions. The colder and drier conditions of 2012 contributed to the accumulation of organic acids (mean: 890 mg/100 g), free amino acids (mean: 201.59 mg/100 g), and secondary metabolites (mean: 84.14 mg/100 g). The range of variability for organic acids ranged from 140 to 2140, for free amino acids from 11.8 to 610, and for secondary metabolites from 4.4 to 224.6 mg/100 g. Grass pea accessions with high organic acid, free amino acid and secondary metabolite contents were identified: k-900 (Colombia) for organic acids (2140, 610 and 178 mg/100 g); k-51 (Georgia) and k-959 (Afghanistan) for free amino acids (401.29 and 540.63 mg/100 g); k-893 (Eritrea) for secondary metabolites (199.39 mg/100 g), etc. They can serve as source material for the development of cultivars for different uses (forage and medicinal).
Seed metabolomic profiles have been investigated in wild and cultivated forms (cultivars) of oat (Avena L.). Seed accessions from the VIR oat collection were used for the research. Metabolomic analysis employed gas liquid chromatography-mass spectrometry (GLC-MS) using an Agilent 6850 chromatographer (USA). The analysis covered the composition and content of organic and fatty acids, amino acids, polyatomic spirits and sugars. The content fluctuation range for the studied groups of compounds was found to be narrower (significantly in some cases) in cultivars than in the wild species. Along with a sharp increase in oleic acid content, cultivars demonstrated a decrease in that of linoleic acid. The general conclusions from the comparison of seed metabolomic profiles in wild species and cultivars are presented below. A number of wild species can be recommended as a potential source of biochemical quality traits for breeding purposes. A series of metabolites (compounds), the content of which changes during domestication or which differentiate wild oat species from cultivars has been identified was found. Along with such well-known healthy food chemical factors as oleic acid, glucose and fructose, etc., differences concerning monoacylglycerol compounds (MAG 16 : 0 and MAG-2 18 : 2, etc.) have been found. The latter have been proposed to be related to the formation of adaptive traits, in particular, resistance to diseases and pests, and to environmental abiotic stresses.Key words: Avena L.; wild species; varieties, seeds; gas chromatography; mass spectrometry; metabolomics; amelioration; adaptability and polymorphism of characters.Исследовались метаболомные спектры зерновок диких и куль ти-вируемых форм (сортов) овса (Avena L.). Материалом для изучения служили образцы семян из коллекции ВИР. Метаболомные иссле-дования (анализ метаболома) проводили методом газожидкостной хроматографии с масс-спектрометрией (ГЖХ-МС) на хроматографе Agilent 6850 (CША). Анализировали состав и содержание органи-ческих и жирных кислот, аминокислот, многоатомных спиртов и сахаров. Установлено, что у сортов по сравнению с дикими видами сузился (в ряде случаев существенно) диапазон колеба-ния значений содержания изученных групп соединений. Наряду с резким увеличением содержания олеиновой кислоты у сортов снизилось содержание линолевой кислоты. В целом сравнение метаболомных спектров зерновок диких видов и сортов позво-лило сделать следующие основные выводы. Ряд дикорастущих видов овса может быть рекомендован в качестве потенциального источника биохимических признаков качества при селекции. Выявлены метаболиты, содержание которых меняется в процессе окультуривания или по которым дикие виды овса отличаются от сортов этой культуры. Среди этих соединений наряду с такими широко известными составляющими здорового питания, как олеиновая кислота, глюкоза, фруктоза и др., выявлены моноацил-глицеролы -МАГ 16 : 0, МАГ-2 18 : 2 и др. Высказано предположение, что последние могут быть связаны с формированием признаков адаптивности, в частности с устойчивость...
Asparagus bean immature pods and seeds are popular as food products for healthy and functional nutrition. Gas chromatography with mass spectrometry was used to compare metabolomic profiles of seeds and pods yielded by old Chinese landraces and the modern cultivars ‘Yunanskaya’ and ‘Sibirskiy razmer’. About 120 compounds were identified. The content of a majority among groups of compounds was higher in pods than in seeds. The amount of free amino acids in pods was 47 times higher, polyols and phytosterols 5 times higher, phenolics 4 times higher, and organic acids and saponins 3 times higher than in seeds. Differences were found in the relative content of compounds. Among phenolic compounds, the dominant one for seeds was protocatechuic acid, and for pods 4-hydroxycinnamic acid. Only polyols were identified in seeds, but pods additionally contained ethanolamine, phytol, and phytosphingosine. The ratio for nonsaturated/saturated fatty acids was 2.2 in seeds and 1.4 in pods. Seeds contained more stigmasterol, and pods more β-sitosterol. Aglycones of saponins were identified: cycloartenol in seeds, α- and β-amyrins in pods. Oligosaccharides dominated in both seeds and pods. Landraces manifested higher protein content in pods, while modern cultivars had pods with higher contents of organic acids, polyols, monosaccharides, and fatty acids. The results obtained confirm the high nutritional value of asparagus bean seeds and pods, and the prospects of their use in various diets.
For a targeted search of initial breeding material for the quality of soybean seeds, it is necessary to know the patterns of the dependence of the corresponding seed characters on the weather and climatic conditions in a particular region. Global climatic change, the concretization of which is relevant, has a share in this dependence. Thus, the aim of this work was to identify the relationship between the variability of protein and oil content in soybean seeds with climatic parameters in the North Caucasus as well as trends in this variability over a long time period. The study of 1 442 soybean accessions from VIR collection in the Krasnodar region during 1987–2015 had been carried out and the tendencies of the variability of protein and oil content in seeds in this environment were estimated. The regression analysis in differences with forward stepwise selection of variables has been used to construct models for the dependence of the protein and oil content on generalized agrometeorological indices. During 1987–2015, for the period with temperatures above 10 °C, the sums of active temperatures increased by 218 °C/10 years and precipitation decreased by 20.9 mm/10 years. In the dynamics of protein content, a trend has been revealed as an increase by 2.5 % over 10 years, while there is no reliable trend in oil content. The maximum average mean of oil content and the smallest protein were in the middle-maturing accessions (22.2 and 38.8 %), and a relatively high protein content was detected, on average, in the early- (21.6 and 40.0 %) and late-maturing (20.2 and 39.9 %) varieties. The protein content had been increasing with a growth of the duration of the period with temperatures above 22 °C and decreasing with a raise in precipitation over a period of temperatures above 18 °C. The accumulation of oil in seeds was promoted by an increase of the hydrothermal coefficient over the period with temperatures above 19 °C, and, in late-maturating varieties, prevented by a prolonged autumn period with temperatures below 15 °C. Long-term growth in protein content is due to both climatic change and genetic improvement of varieties.
Narrow-leaved lupine (Lupinus angustifolius L.), a valuable leguminous crop adapted to a wide range of climatic conditions, has a very short history of domestication. For many centuries it was used mainly as a green manure, since the success and prospects of the multi-purpose use of the species depend on its breeding improvement, in particular, on a particular concentration of alkaloids in seeds and green mass. The first varieties of scientific breeding were created only in the 1930s after the appearance of low-alkaloid mutants. Despite wide prospects for use in various areas of the national economy, unstable productivity and susceptibility to diseases hinder the production of this crop. Obviously, breeders deal only with a small part of the gene pool of the species and limited genetic resources, using mainly low-alkaloid (sweet) genotypes to create new varieties. The genetic potential of the species can be used more efficiently. At the same time, it is rational to create highly alkaloid (bitter) varieties for green manure, while food and feed varieties should not lose their adaptive potential, in particular, resistance to pathogens, due to the elimination of alkaloids. In this regard, it seems to be a productive idea to create ‘bitter/sweet’ varieties combining a high content of alkaloids in the vegetative organs and low in seeds, which can be achieved by regulating the synthesis/transport of alkaloids in the plant. The paper discusses the current state of use of the species as a green manure, fodder, food plant. Information is given on the quantity and qualitative composition of narrow-leaved lupine alkaloids, their applied value, in particular, fungicidal, antibacterial, insecticidal, the use of lupine alkaloids as active principles of drugs. Along with promising breeding considerations, the possibility of using technologies for processing raw high-alkaloid materials with the accompanying extraction of valuable ingredients for pharmaceuticals is discussed. Information is briefly presented about the genomic resources of the species and the prospects for their use in marker-assistant selection and genome editing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.