No abstract
This paper is devoted to the problem of synchronization of dynamical systems in chaotic oscillations regimes. The authors attempt to use the ideas of synchronization and its mechanisms on a certain class of chaotic oscillations. These are chaotic oscillations for which one can pick out basic frequencies in their power spectra. The physical and computer experiments were carried out for the system of two coupled auto-oscillators. The experimental installation permitted one to realize both unidirectional coupling (external synchronization) and symmetrical coupling (mutual synchronization). An auto-oscillator with an inertial nonlinearity was chosen as a partial subsystem. It possesses a chaotic attractor of spiral type in its phase space. It is known that such chaotic oscillations have a distinguished peak in the power spectrum at the frequency f0 (basic frequency). In the experiments, one could make the basic frequencies of partial oscillators equal or different. The bifurcation diagrams on the plane of control parameters "detuning" and "coupling" were constructed and analyzed. The results of investigations permit one to conclude that classical ideas of synchronization can be applied to chaotic systems of the mentioned type. Two mechanisms of chaos synchronization were established: 1) basic frequency locking and 2) basic frequency suppression. The bifurcational background of these mechanisms was created using numerical analysis on a computer. This allowed one to analyze the evolution of different oscillation characteristics under the influence of synchronization.
We investigate the influence of additive Gaussian white noise on two different bistable self-sustained oscillators: Duffing-Van der Pol oscillator with hard excitation and a model of a synthetic genetic oscillator. In the deterministic case, both oscillators are characterized with a coexistence of a stable limit cycle and a stable equilibrium state. We find that under the influence of noise, their dynamics can be well characterized through the concept of stochastic bifurcation, consisting in a qualitative change of the stationary amplitude distribution. For the Duffing-Van der Pol oscillator analytical results, obtained for a quasiharmonic approach, are compared with the result of direct computer simulations. In particular, we show that the dynamics is different for isochronous and anisochronous systems. Moreover, we find that the increase of noise intensity in the isochronous regime leads to a narrowing of the spectral line. This effect is similar to coherence resonance. However, in the case of anisochronous systems, this effect breaks down and a new phenomenon, anisochronous-based stochastic bifurcation occurs.
No abstract
The effect of synchronization has been studied in a system of two coupled Van der Pol oscillators under external harmonic force. The analysis has been carried out using the phase approach. The mechanisms of complete and partial synchronization have been established. The main type of bifurcation described in this paper is the saddle-node bifurcation of invariant curves that corresponds to the saddle-node bifurcation of two-dimensional tori in the complete system of differential equations for the dynamical system under study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.