BACKGROUND: Wastes generated in production of caprolactam (2‐oxohexamethylenimine, ε‐caprolactam) and caprolactam‐based polymers contain the unreacted monomer and its low‐molecular linear and cyclic oligomers. Application of microorganisms for biological treatment of caprolactam‐ and oligomer‐containing wastes can become an alternative to existing waste utilization methods. This work investigated the transformation of caprolactam low‐molecular linear oligomers by caprolactam‐degrading bacteria bearing degradative plasmids (CAP plasmids).RESULTS Based on mass spectrometry data, a scheme for the biotransformation of caprolactam linear oligomers is proposed. Oxidative transamination to corresponding dicarboxylic acids can be one of the transformation mechanisms. Oxidative transamination occurs due to a broad substrate specificity of the caprolactam catabolism key enzymes 2‐oxoglutarate‐6‐aminohexanoate transaminase (EC.2.6.1‐) and 6‐oxohexanoate dehydrogenase (EC.1.2.1.63) whose synthesis is determined by CAP plasmids. Incubation of cells 2.0–3.0 × 109 CFU mL−1 of strains with various plasmid‐bacterial host combinations in 2 mmol L−1 solution of a dimer for 96 h leads to its almost complete transformation to a corresponding dicarboxylic acid. The dynamics of the process largely depends on the host strain.CONCLUSION: Deamination of oligomers in their transformation by the enzyme systems of caprolactam‐degrading bacteria can substitute the chemical methods of pretreating caprolactam‐ and oligomer‐containing wastes for their subsequent biological purification. Copyright © 2012 Society of Chemical Industry
Thermophilic and thermoresistant strains of bacilli were screened on a medium containing Chrome Azurol S for producers of siderophores. It was found that the Bacillus licheniformis VK21 strain dramatically increases secretion of the metabolite, a chelator of Fe3+, in response to addition of manganese(II) salts. The growth of the producer on a minimum medium containing MnSO4 under the conditions of iron deficiency is accompanied by the accumulation of a catechol product, the content of which reaches a maximum at the beginning of the stationary growth phase of culture. In the presence of FeCl3, the amount of the catechol product in the medium considerably decreases. The siderophore, called SVK21, was isolated from the cultural medium and purified by reversed phase HPLC, and its siderophore function was confirmed by the test for the restoration of growth of producer cells in a medium containing EDTA. The UV spectrum of the siderophore has absorption maxima at 248 and 315 nm. According to amino acid analysis and NMR spectrometry, the metabolite SVK21 is 2,3-dihydroxybenzoyl-glycyl-threonine. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also http://www.maik.ru.
The intensive development of agriculture leads to the depletion of land and a decrease in crop yields and in plant resistances to diseases. A large number of fertilizers and pesticides are currently used to solve these problems. Chemicals can enter the soil and penetrate into the groundwater and agricultural plants. Therefore, the primary task is to intensify agricultural production without causing additional damage to the environment. This problem can be partially solved using microorganisms with target properties. Microorganisms that combine several useful traits are especially valuable. The aim of this work was to search for new microbial strains, which are characterized by the ability to increase the bioavailability of nutrients, phytostimulation, the antifungal effect and the decomposition of some xenobiotics. A few isolated strains of the genera Bacillus and Pseudomonas were characterized by high activity against fungal phytopathogens. One of the bacterial strains identified as Priestiaaryabhattai on the basis of the 16S rRNA gene sequence was characterized by an unusual cellular morphology and development cycle, significantly different from all previously described bacteria of this genus. All isolated bacteria are capable of benzoate degradation as a sign of the ability to degrade aromatic compounds. Isolated strains were shown to be prospective agents in biotechnologies.
Two strains (NF1 and NF3) of free-living chemoorganotrophic bacteria have been isolated from multiyear oil slime and Pedilanthus tithymaloides rhizosphere and ascribed to the genus Kaistia of the class Alphaproteobacteria on the basis of the nucleotide sequences of 16S rRNA gene and phenotypic characteristics. These strains can be assigned to ultramicrobacteria as their populations are represented by two subpopulations: (1) ultrasmall cells, on average 200-300 nm in diameter and <0.1 microm(3) in volume, of up to 60% of the total number of cells in a population, and (2) cells 400-800 nm in diameter and 0.15-0.5 microm(3) in volume, of up to 40% of the total number of cells in a population. The interaction of the isolated ultramicrobacteria strains (IUMB) with different bacterial species has been studied in cocultures grown under starvation and in complete nutrient media. It has been found that IUMB can be facultative parasites on certain species of chemoorganotrophic and phototrophic bacteria. The interaction of IUMB with prey bacteria exhibits the extracellular type of parasitism and involves establishing stable cell-cell contacts between the parasites and their prey to cause destruction of host cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.