The results of the synthesis of Ag-TiO 2 nanostructures were presented. The optical properties of silver nanoparticles and Ag-TiO 2 structures were studied. The size and shape of Ag-TiO 2 nanostructures were determined. The electron density in silver, the damping constant of plasma oscillations, and the ratio between the masses of the Ag core and the TiO 2 shell were determined from the absorption spectra of Ag and Ag-TiO 2 solutions. It was shown that the semiconductor shell of titanium dioxide leads to a decrease in the electron density in silver nanoparticles and the damping constant of plasma oscillations.
. Films formed by nanoparticles, nanorods and nanotubes of titanium dioxide with a thickness of 3.9, 4.0 and 4.1 μm, respectively, with an area of 2 cm2 were obtained by various methods. Nanostructures were characterized by X-ray phase analysis, scanning electron microscopy (SEM), BET (Brunauer–Emmett–Teller), BJH (Barrett–Joyner–Halenda). The electric transport properties of the films were studied by impedance pectroscopy. The photocatalytic activity of the samples was evaluated by the photocurrent and degradation of the methylene blue dye under xenon lamp illumination. The concentration of hydrogen released per unit time was determined by gas chromatography in a standard quartz cuvette using a platinum electrode. The study of texture characteristics showed that the obtained isotherms belong to type IV isotherms with a hysteresis loop, reflecting the process of capillary condensation in mesopores. The diffraction peaks for the films of nanoparticles and nanotubes of titanium dioxide are identical and correspond to the tetragonal phase of anatase, for films of nanorods to the tetragonal phase of rutile. When studying the electric transport properties of films, it was found that films of titanium dioxide nanoparticles have a higher resistance associated with unformed bonds between nanoparticles. Despite the low specific surface area, titanium dioxide nanorods showed higher photocatalytic activity than nanotubes and nanoparticles. The results are confirmed by measurements of photocurrent, dye decomposition and the splitting of water molecules into hydrogen gas and oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.