Atmospheric air monitoring is a systematic, long-term assessment of the level of certain types of pollutants by measuring their amount in the open air. Atmospheric air monitoring is an integral part of an effective air quality management system and is carried out through environmental monitoring networks, which should support timely provision of public information about air pollution, support compliance with ambient air quality standards and development of emission strategies, support for air pollution research.The work is devoted to existing air monitoring technologies: ground (sensors, diffusion tubes, etc.) and remote resources (satellites, aircraft, etc.). In addition, standards of air quality assessment (European and American) are described. As an example, we consider the European Air Quality Index (EAQI) and the Air Quality Index according to EPF standards: indicators by which these indices are calculated, the ranking of air status depending on the value of the index are described.AQI (Air Quality Index) is used as an indicator of the impact of air on the human condition. The European Air Quality Index allows users to better understand air quality where they live, work or travel. By displaying information for Europe, users can gain an understanding of air quality in individual countries, regions and cities. The index is based on the values of the concentration of the five main pollutants, including particles less than 10μm (PM10), particles less than 2.5μm (PM2.5), ozone (O3); nitrogen dioxide (NO2); sulfur dioxide (SO2). To conclude, ground stations give a more accurate picture of the state of the air at a point, while satellite image data with a certain error (due to cloud cover, etc.) can cover a larger area and solve the problem of coverage of stations in the area. There is no single standard for calculation. Today, the European Air Quality Index (EAQI) is used in Ukraine and Europe.
The graphic interpretation of amplitude and frequency of acoustic signals of loose material jet grinding process are resulted. Criteria of process management is determined on the basis of the acoustic monitoring data of jet mill acting.
УДК 004.021 Т. Булана, Б. Молодець АНАЛІЗ ІСНУЮЧИХ ВАРІАНТІВ КЛАСИФІКАЦІЇ ХВОРИХ НА СЕРЦЕВО-СУДИННИМИ ЗАХВОРЮВАННЯМИ ЗА ДОПОМОГОЮ НЕЙРОННИМИ МЕРЕЖАМИ Анотація. Робота присвячена аналізу інформаційних технологій хронобіологічного моніторингу кардіосистем, розробці систему підтримки прийняття рішень для лікарядослідника на базі методів класифікації з використанням нейронних мереж таких як імовірностна неронна мережа PNN (Probabilistic Neural Networks), багатошаровий персептрон MLP NN (Multi-Layer Perceptron), каскадно-кореляційна мережа CasCor (Cascade Correlation). У результаті отримано наступне: найкращим класифікатором є нейромережа каскадної кореляції з 85-88% точністю класифікації. Найгіршим класифікатором стала ймовірнісна нейронна мережа, оскільки точність цього алгоритму залежить від розміру набору даних. Ключові слова: хронобіологія, інформаційна технологія моніторингу, нейронні мережі, класифікація.
The theoretical and experimental mechanisms of thin grinding the loose materials are analyzed. The relation of the density function of acoustic signal amplitudes of grinding process to the degree of loading the jets by material is established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.