The article presents a novel method of fractal time series classification by meta-algorithms based on decision trees. The classification objects are fractal time series. For modeling, binomial stochastic cascade processes are chosen. Each class that was singled out unites model time series with the same fractal properties. Numerical experiments demonstrate that the best results are obtained by the random forest method with regression trees. A comparative analysis of the classification approaches, based on the random forest method, and traditional estimation of self-similarity degree are performed. The results show the advantage of machine learning methods over traditional time series evaluation. The results were used for detecting denial-of-service (DDoS) attacks and demonstrated a high probability of detection.
The paper presents an analysis of the main mechanisms of decryption of SSL/TLS traffic. Methods and technologies for detecting malicious activity in encrypted traffic that are used by leading companies are also considered. Also, the approach for intercepting and decrypting traffic transmitted over SSL/TLS is developed, tested and proposed. The developed approach has been automated and can be used for remote listening of the network, which will allow to decrypt transmitted data in a mode close to real time.
This article considers a short survey of basic methods of social networks analysis, which are used for detecting cyber threats. The main types of social network threats are presented. Basic methods of graph theory and data mining, that deals with social networks analysis are described. Typical security tasks of social network analysis, such as community detection in network, detection of leaders in communities, detection experts in networks, clustering text information and others are considered.
This paper presents a generalized approach to the fractal analysis of self-similar random processes by short time series. Several stages of the fractal analysis are proposed. Preliminary time series analysis includes the removal of short-term dependence, the identification of true long-term dependence and hypothesis test on the existence of a self-similarity property. Methods of unbiased interval estimation of the Hurst exponent in cases of stationary and non-stationary time series are discussed. Methods of estimate refinement are proposed. This approach is applicable to the study of self-similar time series of different nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.