The paper presents a methodical approach to building complex models for analysis of the state’s financial security (SFS) indicators dynamics, based on such methods of multivariate data analysis as the principal component analysis, canonical correlation, level of development, vector autoregression technology, error correction model. Vector autoregressive models of the SFS indicators dynamics of Ukraine and the countries of the European Union have been developed. The interrelationships of the SFS components, short–term effects, the rate of return to the equilibrium trajectory after the impact of external "shocks" (threats) have been studied. Were selected the most sensitive to external "shocks" SFS subsystems, sources of threat occurrence. The proposed complex of models can be considered as an element of the model basis of the forecasting and analytical mechanism of the financial security provision system, which is aimed at earlier informing, detecting threats and preventing their negative impact.
The article is devoted to the development of an effective forecasting unit as an integral element of corporate management systems, including the financial management system. The expediency of proactive management modern technology introduction in the financial management system and subsystem of corporate enterprises anti-crisis management is proved. The necessity of developing a powerful forecasting unit within the framework of solving the problem of preventing financial crises in corporate systems is substantiated. The use of the socioeconomic forecasting progressive method, the "Caterpillar" method, is substantiated. Approbation of the model complex showed that the financial condition of the corporation under investigation in the forecast period may be characterized by an increase in the level of the crisis threat, while for a number of subsidiaries there is a high probability of bankruptcy, which leads to the need to implement anti-crisis measures in the corporate structure.
криз у корпоративних системах на основі нейро-нечітких моделей У статті вирішено актуальну проблему загрози формування фінансових криз у корпоративних системах на основі нейро-нечітких моделей, які дозволяють своєчасно спрогнозувати загрозу банкрутства та попередити його. Зазначено, що понад 50% ВВП України виробляють корпоративні підприємства, і, крім того, є чітка тенденція до поглинання корпораціями суб'єктів малого та мікробізнесу. Наведене доводить необхідність підвищення уваги до проблематики банкрутства саме корпоративних підприємств як визначальної ланки національної економічної інфраструктури. Щороку загострення фінансових криз на корпоративних підприємствах набуває все більшого розголосу, що потребує негайного вирішення даної проблематики.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.