Abstract. Reported are two applications of the functional relations (T -system) among a commuting family of row-to-row transfer matrices proposed in the previous paper Part I.For a general simple Lie algebra X r , we determine the correlation lengths of the associated massive vertex models in the anti-ferroelectric regime and central charges of the RSOS models in two critical regimes. The results reproduce known values or even generalize them, demonstrating the efficiency of the T -system.
T- and Y-systems are ubiquitous structures in classical and quantum integrable systems. They are difference equations having a variety of aspects related to commuting transfer matrices in solvable lattice models, q-characters of Kirillov–Reshetikhin modules of quantum affine algebras, cluster algebras with coefficients, periodicity conjectures of Zamolodchikov and others, dilogarithm identities in conformal field theory, difference analog of L-operators in KP hierarchy, Stokes phenomena in 1D Schrödinger problem, AdS/CFT correspondence, Toda field equations on discrete spacetime, Laplace sequence in discrete geometry, Fermionic character formulas and combinatorial completeness of Bethe ansatz, Q-system and ideal gas with exclusion statistics, analytic and thermodynamic Bethe ansätze, quantum transfer matrix method and so forth. This review is a collection of short reviews on these topics which can be read more or less independently.
Abstract. We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts.
We describe several aspects of the annihilating ideals and reduced chiral algebras of conformal field theories, especially, minimal models of Wn algebras. The structure of the annihilating ideal and a vanishing condition is given. Using the annihilating ideal, the structure of quasi-finite models of the Virasoro (2,q) minimal models are studied, and their intimate relation to the Gordon identities are discussed. We also show the examples in which the reduced algebras of Wn and Wℓ algebras at the same central charge are isomorphic to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.