Предмет исследования. При машинном обучении вероятностных графических моделей нередки ситуации, в которых одному объекту оказываются сопоставлены две или более модели, обученные на различных, но пересекающихся наборах данных. Предметом данного исследования является операция слияния таких моделей, представленных фрагментами знаний алгебраической байесовской сети. Целью данного исследования является описание и формализация способов слияния алгебраических байесовских сетей, представленных в виде фрагментов знаний. Метод. Построены модели слияния, семантика которых четко эксплицируется предположениями о соотношении вероятностных семантик рассматриваемых фрагментов знаний. Основные результаты. Определены и систематизированы способы слияния фрагментов знаний, при которых не происходит генерации новых элементов сети. Приведено и доказано утверждение о числе атомов в получаемой сети и теорема о сложности поддержания ее интернальной непротиворечивости. Продемонстрирован пример слияния двух сетей на выборке с шумом. При этом для проведения компаративного анализа теоретическое распределение выборки задано, а сама выборка генерируется методом Монте-Карло. Практическая значимость. Предложенные в исследовании способы слияния алгебраических байесовских сетей могут найти применение при работе с двумя или более обученными сетями, описывающими различные свойства одного объекта. Использование данных способов позволит построить, агрегирующую все данные об исследуемом объекте, оказавшиеся доступными, в комплексную сеть и проводить в ней операции логико-вероятностного вывода. Ключевые слова вероятностные графические модели, алгебраические байесовские сети, байесовские сети доверия, неполная информация, фрагмент знаний, слияние фрагментов знаний, машинное обучение Благодарности Работа выполнена в рамках проекта по государственному заданию СПИИРАН № 0073-2019-0003 при финансовой поддержке РФФИ, проект № 18-01-00626-Методы представления, синтеза оценок истинности и машинного обучения в алгебраических байесовских сетях и родственных моделях знаний с неопределенностью: логико-вероятностный подход и системы графов.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.