This paper considers existing and promising satellite microwave radiometry systems suitable for the evaluation of geophysical (hydrological) parameters of atmosphere, ocean, and land. A comparative analysis is provided for data sets available for end-users. Algorithms and tools for processing and visualization of satellite data are discussed. The capabilities of modern satellite systems to perform specific tasks of remote sensing are described using the example of a river flood in the Altai region in 2014. Monitoring soil moisture of upper layers of soil on floodplains combined with meteorological forecasts allows assessment of the probability of river flooding at certain areas using values of maximum soil moisture capacity. The effect of changes in the physical properties of ice during its destruction is discussed. This effect has been discovered by analyzing the dynamics of daily satellite measurements of brightness temperatures. It can be considered as a harbinger of ice condition changes of large freshwater bodies. The analysis of brightness temperature seasonal variations is presented using the example of Lake Big Bear (Canada).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.