Introduction. The concreting of solid structures, such as concrete dams, bridge constructions, foundations of buildings and structures, is accompanied by exothermic heating, caused by cement hydration. Heat, emitted by mass concrete blocks, slowly leaves constructions. A substantial temperature difference frequently arises between the solid concrete centre and its surface. If this temperature difference reaches a critical value, thermal cracking occurs, which destroys structural continuity. Temperature problems and those associated with thermal stress state should be resolved to pre-assess and prevent potential cracking. This problem has enjoyed the attention of specialists, and it has been the subject of numerous research projects. Materials and methods. The overview is based on the information about implemented research projects focused on the thermal cracking of mass concrete dams and its prevention. Computer modeling techniques were applied to develop a mathematical model capable of projecting and assessing the potential cracking of mass concrete. Results. The co-authors have compiled an overview of advanced approaches to the assessment of potential thermal crack formation, contemporary problem-solving methods and selected research findings obtained using the finite element method. The co-authors offer a thermal behaviour/thermal stress state projection methodology for solid concrete, as well as a thermal crack formation assessment methodology. Conclusions. The thermal cracking problem has not been solved yet. The proposed methodology and a projection-oriented numerical model can be used as a reference by civil engineers in the process of designing and constructing concrete gravity dams. It may help to reduce cracking probability caused by heat evolution in cement.
Анотация. За последние годы во многих странах мира, в том числе и во Вьетнаме, построено большое количество крупномасштабных сооружений с использованием монолитных бетонных конструкций. Области применения таких конструкций обширны и включают строительство морских сооружений, возведение высотных гидроэнергетических плотин, сооружение автомобильных эстакад на скоростных шоссе и др. Однако, повреждение и растрескивание конструкций, вызванное возникающими температурными напряжениями из-за высокой экзотермии реакции гидратации минеральных вяжущих веществ в раннем возрасте твердения бетона, становятся всё более распространенными и сильно сказываются на их надёжности и долговечности эксплуатации. В работе для определения состава тяжёлого бетона, предназначенного для строительства массивных мостовых опор автомобильных эстакад, был использован вьетнамский стандарт TCVN 9382-2012. Оценка возможности трещинообразования в бетонной опоре моста в раннем возрасте твердения бетона была выполнена путём анализа температурного поля опоры и возникающего в ней термонапряжённого состояния. В результате проведённых исследований была доказана возможность получения требуемого тяжёлого бетона из местных сырьевых материалов Вьетнама, с удобоукладываемостью бетонной смеси по осадке стандартного конуса 14 см, обладающего средней прочностью на сжатие 34,7 МПа и прочностью на растяжение при изгибе 3,0 МПа в возрасте 28 суток нормального твердения. С помощью компьютерной программы Midas Civil были определены максимальные температуры в центральной зоне бетонной конструкции на всех трёх этапах строительства опоры моста, которые составили, соответственно, 72,82 °С через 72 часа, 75,02 °С через 312 часов и 74,82 °С через 480 часов от начала затворения смеси сырьевых материалов водой. Кроме того, было установлено, что на первом этапе возведения мостовой опоры из монолитного бетона к 72 часам его твердения величина растягивающего напряжения на наружной боковой и в нижней части исследованной конструкции превышает прочность бетона на растяжение при изгибе в этом возрасте, что может привести к образованию трещин на поверхности бетонного фундамента опоры моста. К 312 и 480 часам твердения бетона величина растягивающего напряжения, возникающего на боковой и в верхней части возводимой мостовой опоры, тоже превышает его прочность на растяжение при изгибе, что также может привести к образованию трещин в указанных местах конструкции. Ключевые слова: прочность на сжатие, прочность на растяжение при изгибе, трещинообразование, мостовая опора, фундамент опоры, максимальная температура, температурное поле, термонапряженное состояние.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.