The adsorption, diffusion, and clustering of water molecules on a Pd(111) surface were studied by scanning tunneling microscopy. At 40 kelvin, low-coverage water adsorbs in the form of isolated molecules, which diffuse by hopping to nearest neighbor sites. Upon collision, they form first dimers, then trimers, tetramers, and so on. The mobility of these species increased by several orders of magnitude when dimers, trimers, and tetramers formed, and decreased again when the cluster contained five or more molecules. Cyclic hexamers were found to be particularly stable. They grow with further exposure to form a commensurate hexagonal honeycomb structure relative to the Pd(111) substrate. These observations illustrate the change in relative strength between intermolecular hydrogen bonds and molecule-substrate bonds as a function of water cluster size, the key property that determines the wetting properties of materials.
During reaction, a catalyst surface usually interacts with a constantly fluctuating mix of reactants, products, 'spectators' that do not participate in the reaction, and species that either promote or inhibit the activity of the catalyst. How molecules adsorb and dissociate under such dynamic conditions is often poorly understood. For example, the dissociative adsorption of the diatomic molecule H2--a central step in many industrially important catalytic processes--is generally assumed to require at least two adjacent and empty atomic adsorption sites (or vacancies). The creation of active sites for H2 dissociation will thus involve the formation of individual vacancies and their subsequent diffusion and aggregation, with the coupling between these events determining the activity of the catalyst surface. But even though active sites are the central component of most reaction models, the processes controlling their formation, and hence the activity of a catalyst surface, have never been captured experimentally. Here we report scanning tunnelling microscopy observations of the transient formation of active sites for the dissociative adsorption of H2 molecules on a palladium (111) surface. We find, contrary to conventional thinking, that two-vacancy sites seem inactive, and that aggregates of three or more hydrogen vacancies are required for efficient H2 dissociation.
Scanning tunneling microscopy (STM) images of water submonolayers on Pd(111) reveal quasiperiodic and isolated adclusters with internal structure that would ordinarily be ascribed to icelike puckered hexagonal units. However, density functional theory and STM simulations contradict this conventional picture, showing instead that the water adlayers are composed mainly of flat-lying molecules arranged in planar water hexagons. A new rule for two dimensional (2D) water growth is offered that generates the structures observed experimentally from planar hexamer units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.