BackgroundGenome variability of host genome and cancer cells play critical role in diversity of response to existing therapies and overall success in treating oncological diseases. In chronic myeloid leukemia targeted therapy with tyrosine kinase inhibitors demonstrates high efficacy in most of the patients. However about 15 % of patients demonstrate primary resistance to standard therapy. Whole exome sequencing is a good tool for unbiased search of genetic variations important for prognosis of survival and therapy efficacy in many cancers. We apply this approach to CML patients with optimal response and failure of tyrosine kinase therapy.ResultsWe analyzed exome variations between optimal responders and failures and found 7 variants in cancer-related genes with different genotypes in two groups of patients. Five of them were found in optimal responders: rs11579366, rs1990236, rs176037, rs10653661, rs3803264 and two in failures: rs3099950, rs9471966. These variants were found in genes associated with cancers (ANKRD35, DNAH9, MAGEC1, TOX3) or participating in cancer-related signaling pathways (THSD1, MORN2, PTCRA).ConclusionWe found gene variants which may become early predictors of the therapy outcome and allow development of new early prognostic tests for estimation of therapy efficacy in CML patients. Normal genetic variation may influence therapy efficacy during targeted treatment of cancers.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-015-0308-7) contains supplementary material, which is available to authorized users.
Chronic myeloid leukemia (CML) is a myeloproliferative disease well treated by tyrosine kinase inhibitors (TKIs). The aim was to identify genes with a predictive value for relapse-free survival after TKI cessation in CML patients. We performed whole-exome sequencing of DNA from six CML patients in long-lasting deep molecular remission. Patients were divided into two groups with relapse (n = 3) and without relapse (n = 3) after TKI discontinuation. We found variants in genes CYP1B1, ALPK2, and IRF1 in group of patients with relapse and one variant in gene PARP9 in group of patients without relapse. We verified prognostic value of the found markers in a small group of patients with TKI discontinuation and demonstrated their high sensitivity (77%), specificity (86%), positive (85%), and negative (79%) predictive values. Thus we revealed genetic variants, which are potential markers of outcome prediction in CML patients after TKI discontinuation.
BackgroundApproximately 5–20% of chronic myeloid leukemia (CML) patients demonstrate primary resistance or intolerance to imatinib. None of the existing predictive scores gives a good prognosis of TKI efficacy. Gene polymorphisms, expression and microRNAs are known to be involved in the pathogenesis of TKI resistance in CML. The aim of our study is to find new molecular markers of TKI therapy efficacy in CML patients.MethodsNewly diagnosed patients with Ph+ CML in chronic phase were included in this study. Optimal and non-optimal responses to TKI were estimated according to ELN 2013 recommendation. We performed genotyping of selected polymorphisms in 62 blood samples of CML patients, expression profiling of 33 RNA samples extracted from blood and miRNA profiling of 800 miRNA in 12 blood samples of CML patients.ResultsThe frequencies of genotypes at the studied loci did not differ between groups of patients with an optimal and non-optimal response to TKI therapy. Analysis of the expression of 34,681 genes revealed 26 differently expressed genes (p < 0.05) in groups of patients with different TKI responses, but differences were very small and were not confirmed by qPCR. Finally, we did not find difference in miRNA expression between the groups.ConclusionsUsing modern high-throughput methods such as whole-exome sequencing, transcriptome and miRNA analysis, we could not find reliable molecular markers for early prediction of TKI efficiency in Ph+ CML patients.Electronic supplementary materialThe online version of this article (10.1186/s12920-019-0481-z) contains supplementary material, which is available to authorized users.
Development of genome editing methods created new opportunities for the development of etiology-based therapies of hereditary diseases. Here, we demonstrate that CRISPR/Cas9 can correct p.F508del mutation in the CFTR gene in the CFTE29o- cells and induced pluripotent stem cells (iPSCs) derived from patients with cystic fibrosis (CF). We used several combinations of Cas9, sgRNA and ssODN and measured editing efficiency in the endogenous CFTR gene and in the co-transfected plasmid containing the CFTR locus with the p.F508del mutation. The non-homologous end joining (NHEJ) frequency in the CFTR gene in the CFTE29o- cells varied from 1.25% to 2.54% of alleles. The best homology-directed repair (HDR) frequency in the endogenous CFTR locus was 1.42% of alleles. In iPSCs, the NHEJ frequency in the CFTR gene varied from 5.5% to 12.13% of alleles. The best HDR efficacy was 2.38% of alleles. Our results show that p.F508del mutation editing using CRISPR/Cas9 in CF patient-derived iPSCs is a relatively rare event and subsequent cell selection and cultivation should be carried out.
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the presence of BCR/ABL fusion gene in leukemic cells, which promotes uncontrolled cell proliferation. Up to 20% of CML patients show primary resistance or non-optimal response to tyrosine kinase inhibitor (TKI) therapy. We investigated the association between copy number variation (CNV) in glutathione S-transferases (GST) and cytochromes (CYP) and the response rate to TKI. We enrolled 47 patients with CML: 31 with an optimal response and 16 with failure at 6 months in accordance with European LeukemiaNet 2013 recommendations. CNV detection was performed using SALSA MLPA P128-C1 Cytochrome P450 probe mix. Patients with optimal response and with failure of TKI therapy showed different frequencies of wild type and mutated CYPs and GST (p<0.0013). Validation in the group of 15 patients proved high prognostic value (p = 0.02): positive and negative predictive value 83% and 78%; sensitivity and specificity 71% and 88%. Wild type genotypes of CYP and GST associate with a worse response to TKI treatment in CML patients. This test can be recommended for further clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.