Рассмотрен механизм динамической неустойчивости поверхности твердого тела под нагрузкой, определяемой возмущениями электронной плотности и изменением межатомного взаимодействия. Данная неустойчивость проявляется при возбуждении динамических смещений атомов в поверхностном слое, которые могут приводить к образованию живущих конечное время структур в виде волн с большой амплитудой. Такие структуры наблюдались ранее экспериментально на растянутой поверхности (111) германия. Работа выполнена по проекту 23.1.2. Программы фундаментальных научных исследований государственных академий наук на 2013-2020 годы.
Построена кинетическая модель, выявлены физические причины, условия, механизм и закономерности зарождения и распространения температурного фронта при термоактивированном аморфно-кристаллическом превращении в Ti 50 Cu 50 , инициированном объемным тепловым источником. Эт а модель количественно и качественно описывает результаты и закономерности распространения температурного фронта, полученные экспериментально.
A model and kinetic theory of structural changes in crystals upon continuous heating are proposed. Nonadiabatic transitions of atoms between different states of a system of nuclei and electrons are taken into account. Non-adiabatic transitions initiate structural rearrangements determined by a change in the short-range order upon the redistribution of electron density. It was shown that continuous heating stimulates structural changes in the crystal and lowers the temperature of a known phase transition.
A dislocation glide mechanism at low temperatures is proposed. The mechanism is based on taking into account the dynamic displacements of atoms — displacements caused by nonadiabatic transitions of atoms in a crystal with a dislocation under the action of an external force. Dynamic displacements initiate the instability of a direct dislocation of relatively low-amplitude displacements during atomic vibrations. The development of instability leads to the formation of a double kink and a dislocation shift by one interatomic distance.
Our study aimed at investigating the origin and development of ‘slow’ movements in a solid body/medium under loading and studying the role of such movements in the occurrence of critical states, i.e. sources of destruction in a stable solid medium. Computerized modeling was conducted to simulate the evolution of the stress-strain state and the formation of slow deformation waves in a loaded medium. We have developed and justified a mathematical model of the loaded elastoplastic medium, which demonstrates the joint generation and propagation of ordinary stress waves (propagating with the velocity of sound) and slow deformation waves of the inelastic nature. The propagation rates of the latter are 5–7 orders of magnitude lower than the velocity of sound. The features of slow deformation wave propagation in the solid media are investigated. In the model, slow deformation waves interact under certain conditions as solitons and penetrate each other. Considering the properties, they are similar to both solitons satisfying the solutions of the non-linear Korteweg – de Vries equation and kinks satisfying the solutions of the sin-Gordon equation. Slow deformation fronts are actively involved into the formation of sources of destruction and provide an effective mechanism for the transfer and redistribution of energy in the loaded medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.