Âñåðîññèéñêèé íàó÷íî-èññëåäîâàòåëüñêèé èíñòèòóò ïðîòèâîïîaeàðíîé îáîðîíû Ì×Ñ Ðîññèè (Ðîññèÿ, 143903, Ìîñêîâñêàÿ îáë., ã. Áàëàøèõà, ìêð. ÂÍÈÈÏÎ, 12) ÐÅÇÞÌÅ Ââåäåíèå.  ñîîòâåòñòâèè ñ òðåáîâàíèÿìè ÑÏ 2.13130.2012 (ï. 5.4.3) äîïóñêàåòñÿ ïðèìåíåíèå íåçàùèùåííûõ ñòàëüíûõ êîíñòðóêöèé, åñëè òðåáóåìûé ïðåäåë èõ îãíåñòîéêîñòè ñîñòàâëÿåò R 15 (RE 15, REI 15). Îäíàêî ôàêòè÷åñêèé ïðåäåë îãíåñòîéêîñòè çàâèñèò êàê îò ïðèâåäåííîé òîëùèíû êîíñòðóêöèè, òàê è îò òåìïåðàòóðíîãî ðåaeèìà ïîaeàðà ("öåëëþëîçíûé" èëè óãëåâîäîðîäíûé). Ðàáîòà ïîñâÿùåíà ðàñ÷åòíîé îöåíêå ôàêòè÷åñêîãî ïðåäåëà îãíåñòîéêîñòè íåçàùèùåííûõ ñòàëüíûõ êîíñòðóêöèé äëÿ òåìïåðàòóðíûõ ðåaeèìîâ, ñîîòâåòñòâóþùèõ ñòàíäàðòíûì "öåëëþëîçíîìó" è óãëåâîäîðîäíîìó ïîaeàðàì, â çàâèñèìîñòè îò ïðèâåäåííîé òîëùèíû êîíñòðóêöèé. Ìåòîäèêà ðàñ÷åòà è ïîëó÷åííûå ðåçóëüòàòû. ×èñëåííîå ìîäåëèðîâàíèå ïðîãðåâà êîíñòðóêöèé ïðîâîäèëè ñ ïîìîùüþ ïðîãðàììíîãî êîìïëåêñà FDS 6. Ðàññìàòðèâàëèñü ñòàëüíûå íåçàùèùåííûå êîíñòðóêöèè ñ ïðèâåäåííîé òîëùèíîé dêð îò 3 äî 60 ìì. Ïðåäåë îãíåñòîéêîñòè óñòàíàâëèâàëè ïî äîñòèaeåíèè êîíñòðóêöèåé òåìïåðàòóðû 500°Ñ. Ïîëó÷åíû çàâèñèìîñòè ôàêòè÷åñêîãî ïðåäåëà îãíåñòîéêîñòè êîíñòðóêöèè îò åå ïðèâåäåííîé òîëùèíû dêð, êîòîðûé äëÿ óãëåâîäîðîäíîãî ðåaeèìà ïîaeàðà îêàçàëñÿ ñóùåñòâåííî íèaeå, ÷åì äëÿ "öåëëþëîçíîãî". Íàéäåíà çàâèñèìîñòü îòíîøåíèÿ ïðåäåëîâ îãíåñòîéêîñòè äëÿ óãëåâîäîðîäíîãî è "öåëëþëîçíîãî" ïîaeàðîâ îò ïðèâåäåííîé òîëùèíû ñòðîèòåëüíîé êîíñòðóêöèè. Çàêëþ÷åíèå. Ðåçóëüòàòû ðàáîòû ïîäòâåðaeäàþò îáîñíîâàííîñòü òðåáîâàíèé ÑÏ 2.13130.2012 (ï. 5.4.3) â ÷àñòè âîçìîaeíîñòè ïðèìåíåíèÿ íåçàùèùåííûõ ñòàëüíûõ êîíñòðóêöèé, åñëè òðåáóåìûé ïðåäåë îãíåñòîéêîñòè ñîñòàâëÿåò R 15 (RE 15, REI 15) äëÿ "öåëëþëîçíîãî" ïîaeàðà.  òî aeå âðåìÿ äëÿ óãëåâîäîðîäíîãî ðåaeèìà ïîaeàðà äàííîå òðåáîâàíèå íåïðèìåíèìî. Êëþ÷åâûå ñëîâà: "öåëëþëîçíûé" ïîaeàð; óãëåâîäîðîäíûé ïîaeàð; ïðèâåäåííàÿ òîëùèíà êîíñòðóêöèè; FDS 6; ïðîãðåâ êîíñòðóêöèè.
В настоящее время во многих странах мира активно ведутся работы по развитию безуглеродной энергетики, что связано с необходимостью снижения антропогенного воздействия на климат. Важная роль водорода в развитии безуглеродной энергетики обусловлена тем обстоятельством, что энергия, получаемая от возобновляемых источников (например, солнечная, ветровая энергия), производится часто на достаточно большом удалении от мест ее потребления и неравномерно по времени. В связи с этим возникает проблема ее хранения и транспортировки, которая может быть решена путем получения водорода за счет возобновляемых источников энергии с дальнейшей его транспортировкой и хранением. При этом очень важно обеспечить пожаровзрывобезопасность указанных процессов. Решению указанной проблемы посвящен ряд литературных источников, которые являются объектом рассмотрения в данной работе. Проанализированы способы хранения и транспортировки водорода в газообразном (GH2) и жидком состоянии (LH2), а также в виде жидких органических носителей водорода (LOHC). Nowadays in many countries there are carried out active studies aimed at the development of carbon-free energetics because of the need to reduce the anthropogenic influence on the climate. An important role of hydrogen in the development of this type of energetics is caused by the necessity of an application of renewable energy sources (sun, wind etc.). Energy from these sources is generated non-uniformly in time and often far from places of its consumption. Therefore a problem of a storage and transportation of such energy arises which can be solved by means of a production of hydrogen via the renewable sources with its further storage and transportation. Hydrogen is a flammable gas so fire prevention measures should be applied during these processes. This study is aimed at the analysis of this problem. The following main methods for the storage and the transportation of hydrogen are considered: in a gaseous phase (GH2), in a liquid phase (LH2) and in the form of liquid organic hydrogen carriers (LOHC). The transportation of a compressed hydrogen can be fulfilled in vessels made of steel (pressure up to 50 MPa), steel with a covering by fiberglass, composite materials (pressure up to 70 MPa), composite materials reinforced by metal strings (pressure up to 100 MPa). An application of cryo-compressed hydrogen (temperature near –233 °C) can be used in order to increase a density of product. The transportation of hydrogen can be performed by means of tubes, but the materials of these tubes should be stable to the action of compressed hydrogen. From an economic viewpoint liquid hydrogen should be stored in large tanks with the volume of 20 000–100 000 m3 (like LNG). But up to now such large tanks are not created due to a very low temperature of LH2. A maximum volume of the existing LH2 tanks is equal to 6000 m3. The key question for a production of the large amount of LH2 is an availability of an effective thermal isolation in order to decrease the liquid hydrogen evaporation. An application of very low pressure inside a space between walls of double-wall tanks can be considered as an effective measure, but an evacuation of this space up to this low pressure can be very durable (up to several months). The application of LOHC is one of the perspective methods for the storage and the transportation of hydrogen. In this case hydrogen is bounded inside LOHC and can be released by means of catalytic dehydrogenation processes. The storage and the transportation of LOHC are not connected with a high fire and explosion hazard which is not higher than in the case of petrol. The analysis of publications in this area is given
Introduction. The problem of greenhouse gas emissions from hydrocarbon-powered vehicles, polluting the air, makes consumption of hydrogen as an alternative motor fuel particularly relevant. Solutions to this problem are provided in a number of works written by foreign researchers. This article contains the analysis of these works in respect of fi re and explosion safety assurance at gaseous and liquid hydrogen filling stations (hydrogen fi lling stations).Features of hydrogen storage. Motor fuel storage is a main problem of hydrogen filling stations and their operation. Most advanced hydrogen storage methods (applicable to gaseous, liquid and adsorbed hydrogen, as well as metal hydrides that contain hydrogen) are analyzed in the work.Compressed hydrogen filling stations. Fire and explosion safety features of filling stations, where compressed hydrogen is stored, are considered by the author. As a rule, mobile fuel trucks, equipped with compressed gas tanks, are used there.Liquid hydrogen filling stations. Fire safety aspects of filling stations, where liquid hydrogen is stored, regasifi cation is performed, and vehicles are fi lled with compressed gas, are also analyzed.Hydrogen formation at filling stations. One of the ways to supply fuel to a hydrogen filling station is to produce it on site using dehydrogenation of methylcyclohexane, which is delivered in tank trucks. Hydrogen is compressed and stored in cylinders. Fire hazards arising at such stations are analyzed.Main provisions of NFPA 2 in terms of hydrogen filling stations. The requirements of the international standard NFPA 2 Hydrogen Technologies Code. 2016 Edition, that apply to compressed and liquefi ed hydrogen filling stations, are considered.Conclusions. The author has made a conclusion that hydrogen fi lling stations are intensively built in several countries. It has been proven that if necessary protective measures are taken, hydrogen fi lling stations can be as safe as those using hydrocarbon fuel. It is necessary to develop a domestic regulatory document containing fi re safety requirements applicable to hydrogen fi lling stations with account taken of the international experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.