Институт прикладных математических исследований Карельского научного центра РАНПроизводство высокочистого водорода необходимо для экологически чистой энергетики и различных химико-технологических процессов. Значительная часть водорода будет производиться за счет конверсии метана, а также его выделения из других углеводородных газов, не вовлеченных в процесс производства энергии. Методом измерения удельной водородопроницаемости исследуются различные сплавы, перспективные для использования в газоразделительных установках. Требуется оценить параметры диффузии и сорбции с тем, чтобы иметь возможность численно моделировать различные сценарии и условия эксплуатации материала (включая экстремальные), выделять лимитирующие факторы. В статье представлены нелинейная модель водородопроницаемости и ее модификации в соответствии со спецификой эксперимента, разностная схема решения краевой задачи и результаты численного моделирования. К л ю ч е в ы е c л о в а: водородопроницаемость; нелинейные краевые задачи; разностные схемы; численное моделирование.Yu. V. Zaika, N. I. Rodchenkova. BOUNDARY-VALUE PROBLEM OF HYDROGEN PERMEABILITY OF GAS SEPARATION MEMBRANES High-purity hydrogen is required for clean energy and a variety of chemical technology processes. A considerable part of hydrogen is to be obtained by methane conversion and its separation from other hydrocarbon gases not involved in energy production. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear model of hydrogen permeability and its modifications in accordance with the specifics of the experiment, the difference scheme for the solution of the boundary-value problem, and the results of numerical modelling. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744). K e y w o r d s: hydrogen permeability; nonlinear boundary-value problems; difference schemes; numerical simulation.
Parallelized algorithms for the localization and computation of the extrema of functions applied to find approximate solutions of systems of nonlinear equations are outlined. It is shown that they can be used to find the extrema of difference solutions of systems of ordinary differential equations and to perform an analysis for Lyapunov stability. The algorithms are based on sorting a sequence with biunique correspondence of input and output indices, extrema being localized by comparing indices without error accumulation.Keywords: numerical optimization, parallel localization of extrema, approximate solution of systems of nonlinear equations, sorting, stability under perturbation of parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.