Curcumin The design of the device for producing a high-current, bipolar nanosecond discharge over the surface of a non-metallic liquid (water, electrolytes, alcohols, etc.) in air is given. Air pressure is ranged from 5 to 101 kPa. The distance between the tip of the blade and the surface of water or liquid (5% solution of copper sulfate in distilled water) was 4 mm, and the distance between parallel metal blades was 40 mm. The conditions for uniform plasma overlapping of the electrolyte surface between the metal blades are established. The spatial, electrical, and optical characteristics of the discharge are investigated. It is shown that the discharge under study allows obtaining colloidal solutions of copper nanoparticles in distilled water in a macroscopic amount (1 liter or more). The developed reactor is of interest for use in poisonous chemical solution disinfection systems, solutions based on dangerous bacteria and viruses for which the use of traditional systems with a point spark discharge or a barrier discharge becomes ineffective. The rector is also promising for the synthesis of colloidal solutions of transition metal oxide nanoparticles from solutions of the corresponding salts. These solutions can be used in micro-nanotechnology and for antibacterial treatment of plants in greenhouses, processing of medical instruments and materials.
This paper presents the results of study of the longitudinal low-pressure glow discharge in a helium/water mixture. This discharge is proposed for use as a mercury-free source of ultraviolet emission. The emission spectra in the ultraviolet range are recorded by a monochromator and analyzed. In order to interpret the experimental results, the numerical modeling is carried out using global model for 46 species and 577 plasma chemical reactions between them. This model allows us to define the main reactions responsible for the generation and quenching of the excited species, which emit in the ultraviolet range. The optimal conditions are found when the lines with wavelengths of 309 nm OH(A-X) and 150–190 nm OH(X-C,B) have the largest intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.