The proton imaging system is composed of four quadrupole magnetic lenses and a collimator. The quadrupole magnetic lenses can realize point-to-point imaging, and the collimator can improve image quality by controlling proton flux and realize material diagnosis. The magnetic field gradient of an ideal quadrupole lens becomes zero at the edge. Inside the lens, the magnetic field gradient is constant along the axis, while the magnetic field boundary of the actual lens extends outward. In the proton imaging system, the fringing field will affect the proton transport state and the performance of the imaging system as well. In this paper, a method to optimize the system is presented when the fringe field is considered. A proton imaging system of 1.6 GeV is established with the Geant 4 program, in which the magnetic field gradient distribution of the actual lens is approximated by the Bell function. In an ideal imaging system, the external drift length is 1.2 m, the internal drift length is 0.5 m, the length of the magnet is 0.8 m, and the magnetic field gradient is 8.09 T/m. The parameters of the practical imaging system can be obtained by using the optimization method: when the integral difference in magnetic field gradient distribution between the actual lens and the ideal lens is equal to zero, the outer drift length of the imaging system is 1.203 m and the inner drift length is 0.506 m; when the integral difference in the magnetic field gradient distribution between the actual lens and the ideal lens is equal to 1%, the outer drift length is 1.208 m and the inner drift length is 0.516 m. In the numerical simulation, a 1mm-thick copper plate and a concentric ball are chosen as the objects, and the influence of the fringing field on the collimator aperture and that on the proton flux error are studied. The results show that the optimized imaging system can reduce the flux error of protons passing through the object, and the difference in the aperture of collimator is on the order of 10<sup>–2</sup> when the integral difference is on the order of 10<sup>–2</sup> in magnitude.
<sec>Radiative shock is an important phenomenon both in astrophysics and in inertial confinement fusion. In this paper, the radiation properties of X-ray heated radiatve shock in xenon is studied with the simulation method. The radiative shock is described by a one-dimensional, multi-group radiation hydrodynamics model proposed by Zinn [Zinn J 1973 <i> J. Comput. Phys.</i> <b>13</b> 569]. To conduct computation, the opacity and equation-of-state data of xenon are calculated and put into the model. The reliabilities of the model and the physical parameters of xenon are verified by comparing the temperature and velocity of the radiative shock calculated by the model with those measured experimentally. </sec><sec>The evolution of the radiative shock involves abundant physical processes. The core of the xenon can be heated up to 100 eV, resulting in a thermal wave and forming an expanding high-temperature-core. Shortly, the hydrodynamic disturbances reach the thermal wave front, generating a shock. As the thermal wave slows down, the shock gradually exceeds the high-temperature-core, forming a double-step distribution in the temperature profile. </sec><sec>The time evolution of the effective temperature of the radiative shock shows two maximum values and one minimum value, and the radiation spectra often deviate from blackbody spectrum. By analyzing the radiation and absorption properties at different positions of the shock, it can be found that the optical property of the shock is highly dynamic and can generate the above-mentioned radiation characteristics. When the radiative shock is just formed, the radiation comes from the shock surface and the shock precursor has a significant absorption of the radiation. As the shock temperature falls during expansion, the shock precursor disappears and the radiation inside the shock can come out owing to absorption coefficient decreases. When the shock becomes transparent, the radiation surface reaches the outside edge of the high-temperature-core. Then, the temperature of the high-temperature-core decreases further, making this region also optically thin, and the radiation from the inner region can come out. Finally, the radiation strength falls because of temperature decreasing. </sec>
<sec>Active illumination is a crucial technology for active imaging, active tracking and aiming system. But the atmosphere turbulence distributed over the entire path causes the intensity to fluctuate, which reduces the illumination uniformity seriously. Therefore, it is desirable to find ways to reduce the intensity fluctuation and improve the uniformity of active illumination. It has been revealed that one can improve illumination uniformity by using multi-beam laser illuminator. Another effective approach is partially coherent beam illumination.</sec><sec>In this paper, a novel method is suggested to improve the illumination uniformity. Phase disturbance is induced by a ladder-like phase modulator (LPM) and the transmitting field of narrow spectrum laser is confused, and thus the atmosphere turbulence will be compensated and the illumination uniformity will be improved. The physical models of narrow spectrum laser phase modulation and atmosphere propagation are deduced, and the expression of the facular distribution is obtained. The active-illumination experimental setup with a laser propagation distance of 1.8 km through horizontal atmosphere is established. Based on the facular distribution of illumination laser at 1.8 km, the uniformity and stabilization are achieved. The experimental results indicate that the illumination uniformity and stabilization are both improved. The spatial and central time scintillation indexes are improved from 0.73 to 0.33 and from 0.38 to 0.14, respectively.</sec>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.