This study investigated the effect of post-brazing cooling rate and Si addition on the intergranular corrosion (IGC) susceptibility of brazed Al-Mn-Cu alloys by electrochemical analysis and microstructure observation. Waterquenched samples after brazing exhibited no IGC susceptibility, whereas slowly-cooled samples were prone to IGC. The results suggest that IGC is caused by precipitation during cooling. In addition, it was observed that IGC susceptibility depended on the Si content. An alloy sample with a low Si-additive content exhibited high IGC susceptibility because Mn/Cu-depleted zone was formed near the grain boundaries as a result of the preferential precipitation of Al 6 (Mn, Fe) and CuAl 2 on the grain boundaries. In contrast, moderate Si addition inhibited IGC because the decrease of the Mn content in the grain interiors due to enhanced precipitation of Al 15 (Mn, Fe) 3 Si 2 in the grain. Additionally, Cu-depleted zone also disappeared because preferential precipitation of CuAl 2 on the grain boundaries was prevented. The excess-Si alloy exhibited high IGC susceptibility because Si-depleted zone formed around the grain boundaries as a result of the preferential precipitation of coarse Si particles on the grain boundaries although the Mn/Cu-depleted zones were not formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.