In order to obtain a clear retinal image resolution of the human eye, the deformable mirror in adaptive optics system must be able to track and compensate the eyes aberration information in real time. The capability of wavefront aberration correction, especially the dynamic wavefront aberration, is not only depending on the performance of the deformation mirror and other hardwares, but also closely related to the control algorithm of adaptive optics system. Without increasing hardware complexity, a human eye aberration correction optimal control model based on Kalman filter and linear quadratic Gaussian (LQG) control is proposed. Firstly, the dispersion of adaptive optics system is analyzed and it is shown that the study of adaptive optics system under the discrete model is feasible. Then, the LQG optimal control model based on the Kalman filtering is established, and the aberration correction algorithm based on LQG optimal control model is proposed. Finally, the simulation experiment demonstrates the feasibility and effectiveness of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.