The growth of high quality ZnO films is highly desirable due to the promising applications of ZnO in optoelectronics. In this paper, ZnO films were grown on the MgO(111) substrates via the growth technique of molecularbeam epitaxy and their structural and optoelectronic properties were characterized. In particular, the influence of growth condition on the film qualify was investigated. The results show that, inducing a low temperature ZnO buffer layer before the high temperature growth of ZnO films will help to improve the film quality. In situ reflection high-energy electron diffraction (RHEED) and ex situ X-ray Diffraction (XRD) measurements indicate that the ZnO film and the MgO substrate follow the epitaxial relationship: ZnO[1-210]//MgO[1-10] and ZnO[1-100]//MgO[11-2]. Transmission Spectra show the characteristic optical bandgap of ZnO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.