Solar-grade p-type Czochralski silicon wafers are doped with phosphorus by single-face and double-face diffusions, and the influence of Fe-B pairs on the minority carrier lifetime, the trapping centers density and the internal quantum efficiency (IQE) of cells (fabricated from the wafers) is analyzed by measuring microwave-detected photo-conductance decay minority carrier lifetime. In the doped wafers with single-face diffusion, the minority carrier lifetime is determined mainly by the density distribution of Fe-B pairs. However, in the doped wafers with double-face diffusion, the minority carrier lifetime is less influenced by the concentration distribution of Fe-B pairs than by other impurities and defects. Numerical calculation based on the combination of the transient voltage signal and the trapping model indicates that the density of trapping centers is reduced by either of diffusion process. On the other hand, detailed analysis of selected specific spots in one wafer with single-face diffusion shows that Fe-B pairs are not the major factor influencing the density of trapping centers. The wafers with different diffusion processes are fabricated into c-Si solar cells and the IQE is measured by using a light beam induced current. The results show that the IQEs of cells with double-face diffusion are higher than those with single-face diffusion, which demonstrates the negative effect of Fe-B pairs on the IQE of solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.