Exploring the structure of low dimensional materials is a key step towards a complete understanding of condensed matter. In recent years, due to the fast developing of research tools, novel structures of many elements have been reported, revealing the possibility of new properties. Refining the investigation of one-dimensional atomic chain structures have thus received a great amount of attention in the field of condensed matter physics, materials science and chemistry. In this paper, we review the recent advances in the study of confined structures under nanometer environments. We mainly discuss the most interesting structures revealed and the experimental and theoretical methods adopted in these researches, and we also briefly discuss the properties related to the new structures. We particularly focus on elemental materials, which show the richness of one-dimensional structures in vacuum and in nanoconfinement. By understanding the binding and stability of various structures and their properties, we expect that one-dimensional materials should attract a broad range of interests in new materials discovery and new applications. Moreover, we reveal the challenges in accurate theoretical simulations of one-dimensional materials in nanoconfinement, and we provide an outlook of how to overcome such challenges in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.