This paper presents the synchronisation of chaotic systems using a sampled-data fuzzy controller and is meaningful for many physical real-life applications. Firstly, a Takagi-Sugeno (T-S) fuzzy model is employed to represent the chaotic systems that contain some nonlinear terms, then a type of fuzzy sampled-data controller is proposed and an error system formed by the response and drive chaotic system. Secondly, relaxed LMI-based synchronisation conditions are derived by using a new parameter-dependent Lyapunov-Krasovskii functional and relaxed stabilisation techniques for the underlying error system. The derived LMI-based conditions are used to aid the design of a sampled-data fuzzy controller to achieve the synchronisation of chaotic systems. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.
This paper concerns the absolute stability problem of discrete-time descriptor systems with feedback connected ferromagnetic hysteresis nonlinearities. The ferromagnetic hysteresis model satisfies the passivity conditions of hysteresis operator, that is the input-output relation of the transformed operator is passive. The bound condition of the solution of the ferromagnetic hysteresis model is given. Through the framework of loop transformation, an augmented discrete-time descriptor system model is established for the stability analysis. A new extended Tsypkin criterion for the absolute stability of discrete-time descriptor systems with hysteresis is presented based on the linear matrix inequalities technique. A numerical example is given to illustrate the effectiveness of the extended criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.