The Voronoi cell finite element method (VCFEM) is adopted to overcome the limitations of the classic displacement based finite element method in the numerical simulation of heterogeneous materials. The parametric variational principle and quadratic programming method are developed for elastic-plastic Voronoi finite element analysis of two-dimensional problems. Finite element formulations are derived and a standard quadratic programming model is deduced from the elastic-plastic equations. Influence of microscopic heterogeneities on the overall mechanical response of heterogeneous materials is studied in detail. The overall properties of heterogeneous materials depend mostly on the size, shape and distribution of the material phases of the microstructure. Numerical examples are presented to demonstrate the validity and effectiveness of the method developed.
A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCPfunction. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.