Dynamic fracture behaviour of crack curving in bent beams has been investigated. In order to understand the propagation mechanism of such cracks under impact, an experimental method is used that combines dynamic photoelasticity with dynamic caustics to study the interaction of the flexural waves and the crack. From the state change of the transient stresses in polymer specimen, the curving fracture in the impulsively loaded beams is analyzed. The dynamic responses of crack tips are evaluated by the stress intensity factors for the cracks running in varying curvature paths under bending stress wave.
A mechanism of plastic flow localization in ductile matter near microvoids is studied. The voids with the size-scale of micromiUimeter exist in sheet specimens under tensile loading, and the plastic strain field around voids is obtained by digital image processing of deformed grids. The size growth of the microvoids, the spacing change of the neighboring voids, and the development of shear bands in the ligament between the voids, are presented by experimental results accompanied with the plastic strain distribution, that gives good interpretation to the process of void growth and coalescence with the flow localization in the ligaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.