In this study, the microstructure of hot-extruded and under-extruded Zr bearing aluminum alloys Mesoalite10 ®-1.3 mass%Zr was investigated by high-resolution EBSP analysis and the effect of Zr addition on microstructure formation during hot extrusion was studied. In an extruded Zr free alloy, coarse fibrous grains elongated to the extrusion direction were predominantly evolved. And these grains were considered to be formed by elongation of the original equi-axial grains by extrusion. Whereas, in extruded Meso10-1.3 Zr alloy, many fine grains were evolved near the grain boundaries of the fibrous grains. In under-extruded Meso10-1.3 Zr alloy, inhomogeneous local strains were developed near random grain boundaries and new fine grains were formed by continuous dynamic recrystallization. It is considered that in aluminum alloys, the addition of Zr promotes continuous dynamic recrystallization during hot extrusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.